The primary means of control over a Windows application is provided by the application menu. In this chapter, we’ll cover two main topics: user commands and making the menu more useful. You’ll also learn about the Virtual keyword, because to understand how command methods are implemented, you must first understand the concept of virtual methods.

Object-Oriented Methods�tc "Object-Oriented Methods"�

The core of object-oriented programming (OOP) is, of course, the object. An object in OOP is much like a real-life object: it has properties, responds to events, and knows how to perform certain tasks. How an object performs a task is called its method.

Objects are usually composed of smaller objects, called properties. Properties may be objects in their own right; they can also be simple variables or records.

Events and methods are very closely related. In fact, in Pascal they are coded the same way: as procedures and functions closely associated with the object. The difference is subtle: events are triggered directly by some stimulus—a key press, a timer tick—while methods are invoked by the event handler to provide a response. In practice, both event handlers and methods are referred to as methods.

Finally, methods and events manipulate the object’s properties. Borland Pascal doesn’t really have a special name for the formal definition of an object, but other languages do; they refer to it as a class. Thus, I can define a gray 1986 Toyota Tercel hatchback, for example, without actually having one. If I obtain a fleet of them, I only need one description to deal with any or all of them, because each is just another instance of the gray-1986-Toyota-Tercel-hatchback class of cars.

The fact that the gray-1986-Toyota-Tercel-hatchback class is a more specific class than its generic ancestor, car, is an example of inheritance. More than any other trait, inheritance provides object-oriented programming with its power.

Understanding Virtual Methods�tc "Understanding Virtual Methods"�

The need for Virtual methods comes about as soon as you deal with the OOP concept of inheritance. Remember, this is the idea that if an existing class doesn’t do exactly what you need, you can derive a new class that will, and you’ll only have to supply or replace methods that make up the difference. Let’s see how this might work in real life.

Suppose, in the tOString class we created in Chapter 2, we wanted to provide a Print method. This method would send a string to a certain location on a printer page. Suppose we wanted to add a formatting ability, as well. We could add a parameter to the Print method to indicate whether the string was to be right or left justified, or centered; but that would not be in keeping with the ideal of letting objects manage themselves. It would be better if we included a Style property, a Format method that would massage the string, and a desired placement rectangle. The Print method would invoke the Format method. The benefit is that the Format method could now be used by other methods as well, such as in a Paint method intended to place the string on-screen.

Now, suppose we derive from the tOString class a tNString class for dealing with numeric strings. Presumably we would add methods for arithmetic manipulation and for converting to and from binary values. We might add a Mask property to suggest how the string is to be formatted. Certainly we would have to replace the Format method to take advantage of that mask. But the Print method is fine just the way it is.

But now there’s a problem: when the original tOString class was compiled, the only Format method available was the one belonging to tOString. Where the Print method invokes the Format method, the compiler must insert the address of the method to be invoked. If the Format method behaves like a traditional procedure, the compiler will simply supply the address of the Format method and that’s it. But in that case, if you try to use the tNString Print method, you’ll get tOString’s Print method (because you inherited it), and it calls the original Format method, not tNString’s! I imagine the first users of an object-oriented language had fun trying to debug that one!

But there is a solution, and it’s brilliant: all you have to do is declare the original Format method Virtual. This is a message to the compiler that says, “Whenever I refer to this method, do not enter its actual address. Instead, insert a pointer to the Virtual Method Table and resolve the actual address at run-time.”

With the Virtual keyword, when tNString’s Print method is invoked, the inherited method from tOString is executed. But when it calls Format, instead of tOString’s Format, it gets tNString’s Format, which is what you intended.

You should make a method Virtual any time you intend for it to be replaced in a derived class, even though it’s called by a method that probably will not be replaced.

An overriding virtual method must have an identical calling sequence (parameter list) as the original method. (Non-virtual overriding methods can have any calling sequence they like.) Also, once a method is declared Virtual, all overriding methods must also be Virtual.

Done is a method that is always virtual, at least, in descendants of tObject. That’s because tObject includes a method, Free, which is invoked when an object has been made a part of a collection and is being released. Free invokes Done. You will seldom, if ever, override the Free method, but of course Done is unique for any class with object properties of its own. Therefore Done must be a virtual method.

For each class you create that has at least one virtual method, the compiler allocates space for a VMT, as discussed in Chapter 3. All instances of a given class share the same VMT, although different classes never do. The memory allocated for each object that contains virtual methods includes an “invisible” property, a pointer to that object class’ VMT. The compiler is able to construct the VMT itself, but you must invoke a constructor in order to initialize the VMT pointer properly. If you try invoking a virtual method and your program dies horribly, chances are you’ve forgotten to invoke one of its constructors.

In fact, this is the only difference between a constructor and any other kind of method: a constructor includes the code to initialize the VMT pointer. This code is executed before your constructor’s Begin keyword, so the constructor can safely invoke its class’ own virtual methods while executing. (The difference between an ordinary method and a destructor method is that a destructor includes an extra, “invisible” parameter: a Boolean value that indicates to the destructor whether it was invoked through the extended syntax of Dispose. If so, it de-allocates itself before returning.)

The Smart Linker Cannot Identify Unused�Virtual Methods

There is one major disadvantage to virtual methods: the smart linker cannot remove unused virtual methods, because it has no way of knowing which methods are, in fact, unused. When a static method is invoked, the compiler knows about it and the linker can infer, by complement, which static methods are not invoked. But virtual methods are invoked at runtime, not compile time. They must all be there, ready and waiting, just in case.

Therefore, while it’s essential to good design that you make virtual any method that needs to be, it’s also a matter of keeping executable size to within reasonable limits that you not make methods virtual that do not need to be.

Dynamic Methods: Less Filling, Great Taste�tc "Dynamic Methods\: Less Filling, Great Taste"�

Virtual methods sound like a pretty neat idea, and they are; but they’re not without their problems. For example, suppose your new object class needed one hundred virtual methods. With a pointer for each method, the VMT would take over 400 bytes. And since you need a VMT for each derived class, as well, storage space for VMTs might be a major concern. Dynamic methods provide a solution to this problem.

Suppose you wanted to have a separate method for each Windows message—something that OWL does. Windows defines over 125 messages that may be received by any window, plus about 15 more for each of the standard controls, such as the Edit box, list box, and so on. A complex form may have a couple dozen controls, plus the dialog box on which they’re placed. Each control and dialog box is represented by a distinct derivative of tWindowsObject, and each must react in unique ways to many of those 125 different messages. If each message was directed to a different virtual method, and each class derivative has its own VMT, the space requirements of the VMTs become formidable. Dynamic methods provide a slimmer alternative.

Dynamic methods, like virtual methods, are referenced through a table. However, instead of the VMT, dynamic methods are referenced through a Dynamic Method Table (DMT). Each VMT of a class that needs one includes a pointer to its DMT. However, while there is always a distinct VMT for each class—a derived class cannot inherit a VMT; it always gets one of its own—there are only as many DMTs as necessary. If a derived class adds no new dynamic methods, it simply inherits its parent’s DMT.

The savings are obvious: there are no redundant DMTs. Also, each DMT only contains pointers to overriding methods; it also contains a pointer to the ancestor DMT. This is the trade off: while a VMT lookup is very fast—almost as fast as calling a non-virtual (static) method—a DMT lookup can take somewhat longer. It’s yet another example of that age-old balance: time vs. space. You have a choice of fast or small—but not both. (Of course, remember that “somewhat longer” on a modern PC is still a small fraction of a second!)

In practice, dynamic methods are used the same as virtual methods. The declaration is similar, too; you even use the Virtual keyword. The difference is that you add a number to the keyword:

Procedure MyDynamic; Virtual 10;

This number can be any value between 1 and 65,535. However, you’ll rarely (if ever) use a hard-coded number. Instead you’re likely to use constants. For example, to provide an event handler for Windows’ WM_NCPAINT message (which arrives when Windows wants to paint the non-client area of your window—that is, the caption bar, border, and so on), you could declare the following method:

Procedure wmNCPaint (Var Msg: tMessage);

	Virtual wm_First + wm_NCPaint;

As with virtual methods, once a dynamic method has been defined, any override of it must have the identical name and parameter list.

There are several types of messages that can arrive, and OWL has nicely set each off with a constant. They are:

•	Basic Windows messages	wm_First + message identifier

•	Menu commands	cm_First + Menu ID

•	Notifications from controls	id_First + control ID

•	Notifications to controls	nf_First + notification identifier

By tradition, dynamic message-handling methods are prefixed with wm, cm, id, or nf. Although this goes against my no-prefix rule, we’re stuck with it because so many of the message-handling methods have already been defined; and, as I said, overriding methods must have the same name.

This points out another difference between virtual and dynamic methods: a virtual method is identified by its name, a dynamic method is identified by its place in the DMT—that is, by its number. Virtual methods A and B are different because their names are different; but you cannot name dynamic method 1 C, then override it with D.

May I See a Menu?�tc "May I See a Menu?"�

There are three aspects to incorporating a menu within a Windows application: first, the physical menu must be described. This is done in the Resource Workshop (or other resource editor). Second, the methods must be written to provide appropriate handling of the menu command events. Finally, a means must be provided to link the physical menu items with the command handlers. We’ve already built a default physical menu (in Chapter 3), so all that’s left is to create the menu constants and the command handlers.

Menu Constants�tc "Menu Constants"�

To prepare for adding menu processing dynamic methods, you need a list of values; one for each menu command. These values correspond to the menu IDs you assigned when you designed your default menu in the Resource Workshop.

To provide the link between the menu IDs of the actual menu and the dynamic method IDs of the menu-handling methods, add the following block of constants to DLGAPP.PAS, just before the Type declaration for the tDlgAppWindow class:

Const

	cm_FileNew = 101;

	cm_FileOpen = 102;

	cm_FileSave = 103;

	cm_FileSaveAs = 104;

	cm_FilePrint = 105;

	cm_FilePageSetup = 106;

	cm_FilePrinterSetup = 107;

	cm_EditUndo = 205

	cm_EditCut = 201

	cm_EditCopy = 202

	cm_EditPaste = 203

	cm_EditDelete = 204

	cm_EditSelectAll = 206

	cm_SearchFind = 301;

	cm_SearchNext = 302;

	cm_SearchPrev = 303;

	cm_SearchReplace = 304;

	cm_WindowNew = 801;

	cm_WindowCascade = 802;

	cm_WindowTile = 803;

	cm_WindowArrangeIcons = 804;

	cm_WindowCloseAll = 805;

	cm_HelpIndex = 901;

	cm_Help_Keyboard = 902;

	cm_HelpCommands = 903;

	cm_HelpProcedures = 904;

	cm_HelpUsingHelp = 905;

	cm_HelpAbout = 999;

Why should these values be placed in the Interface section of the unit, instead of the Implementation section? There are two reasons. One, they must precede the dynamic method definitions that use them. Since they’re part of the tDlgAppWindow definition, they’re in the Interface section. And two, we’re not going to create methods for every one of these, or even most of them. Most commands are too specific to an application to even imagine a default processing appropriate for what is, after all, an abstract class. Although it’s possible to create a working application from tDlgAppWindow, it won’t do anything useful; and so tDlgAppWindow will never, in practice, be used for anything but a jumping-off point for useful derivatives.

Borland Pascal’s Menu Constants Do Not Match Resource Workshop’s Menu IDs

ObjectWindows has already defined constants for cm_FileOpen, cm_FileSave, cm_Exit, and more. Unfortunately, the numbers Borland assigned to these constants are not the same as the IDs Resource Workshop assigns to the default menus it creates! Rather than expect you to remember them whenever you work with a menu resource, it was easier to redefine the values. However, I kept the value for the File..Exit command, because ObjectWindows supplies a default cmExit method that responds to the cm_Exit command ID.

Closing the Application�tc "Closing the Application"�

With or without a menu, any Windows application should be able to close safely when the user double-clicks or chooses Close from the System menu. Although Windows closes the main window, it’s your responsibility to make sure that everything is appropriately cleaned up: system resources returned to the system, files closed, and so on.

A Windows application can be closed in any of five ways:

•	The user can select File..Exit

•	The user can select Close from the application’s System menu

•	The user can click the End Task button in the Task Manager

•	The user can exit Windows

•	The application can crash

While there is little we can do about the last case but try and make sure it never happens, we do have more control over the first four.

Any app-closing operation ends with the application receiving a WM_CLOSE message. In OWL, this message is sent to the wmClose method, which invokes a CanClose function inherited from tWindowsObject. If CanClose returns True, the wmClose method then invokes the Destroy method, which will get rid of the application. If CanClose returns False, nothing else happens. That’s what is meant by control: the closing of an application is not inevitable, even after the close operation has begun. The application can refuse to cooperate, without getting the user into trouble.

If the user tries to close Windows, Windows first sends each application a WM_QUERYENDSESSION message. If any application responds to the message with a False, Windows will refuse to shut down. Only if all applications agree, will Windows then send a WM_CLOSE to each application.

When your application’s message loop (hidden, you’ll recall, in the tApplication.Run method) receives the WM_QUERYENDSESSION message, it gets directed to the main window’s wmQueryEndSession method. Like the wmClose method, wmQueryEndSession invokes the CanClose method to determine whether the response should be in the affirmative. However, just because wmQueryEndSession is invoked and responds positively, does not mean that the WM_CLOSE message will arrive immediately afterward. Some other application may refuse the request, in which case Windows will not close any of the running applications. Therefore, CanClose must not actually assume that a close will take place, even if it responds positively to the question. (While there are some commercial applications that do close themselves after receiving the WM_QUERYENDSESSION message, this is not kosher behavior and our applications won’t do that.)

The inherited CanClose always returns True, so the default wmClose always closes the application. That’s why the Close command of the System menu worked for us in DLGSKEL, even though we had not written any specific code to close the app. If you tried to close DLGSKEL with the File..Exit command, you may have been surprised that it worked, as well. That’s because of the inherited cmExit method, similar to wmClose.

Adding an About Box�tc "Adding an About Box"�

Most communication between a Windows application and a user takes place within a dialog box, and most dialog boxes appear as the result of the user choosing a command from the menu. The simplest full-fledged dialog box is often an application’s About box, which appears in response to the standard Help..About command and presents the user with information regarding the app’s version, author, and other details.

A Windows application usually sits quietly until the user chooses a menu command, starting a transaction. The app may request more information, by displaying a dialog box to tell the user what information is needed. The user can then either supply the requested information or cancel the operation.

If the application has a small amount of information to present to the user—the time of day, perhaps, or the city to which a requested ZIP code belongs—the function MessageBox can be used to present it. A message box is a simple window, with an optional icon and up to three pre-labeled buttons. With only four parameters, the MessageBox function is easy to use.

However, one of the most-frequently encountered and simplest dialog boxes, the About box, is almost never implemented using MessageBox. It could be—the only user response is “OK,” meaning, “OK, I’ve seen it.” But an About box is your application’s “party dress.” Any place else in your app, attempts at startling originality are more likely to confuse than assist. But in your About box, you can be as innovative and artistic as you can manage, as long as that reassuring OK button is clearly visible.

We’ve already placed a generic About box template in DLGSKEL.RES. Like most About boxes, it includes the application icon, its name, author’s name, and copyright information. You should modify it for each “real” app you derive. But it won’t “show” all by itself; we need to supply the code to make that happen.

To do so takes one line of code, plus the procedure header, making up the cmHelpAbout method. You’ll also have to supply the method definition:

Type

	pDlgAppWindow = ^tDlgAppWindow;

	tDlgAppWindow = Object (tDlgWindow)

			

			

		Procedure cmHelpAbout (Var Msg: tMessage);

			Virtual cm_First + cm_HelpAbout;

		End;

Procedure tDlgAppWindow.cmHelpAbout

		(Var Msg: tMessage);

	Begin

	Application^.ExecDialog (New (pDialog,

		Init (@Self, 'ABOUT')));

	End;

Insert this code into the tDlgAppWindow unit, compile, then run DLGSKEL.PAS. Choose the Help..About DlgSkel command and, voila! The dialog box appears.

If you wanted a more elaborate About box—with animation, music, or system information, such as available memory, added at run-time—you would have to derive a specialized tAboutDlg class (or any name you wish) from tDialog. But the effort involved in showing it would remain the same.

Now, what have we done in this short method? The tDialog class includes an Execute method of its own, which we could have used. But tApplication’s ExecDialog method checks to be sure sufficient memory is available to display the dialog and deals with the situation if there is not; so it’s best to use that technique for displaying dialog boxes.

There are two types of dialog boxes: modal and modeless. A modal dialog box demands immediate attention; you cannot do anything else with your application as long as that box is there. The About box is modal. (A variant is System Modal; you can’t do anything anywhere until you’ve responded to the box. This is reserved for serious system errors in which it would be dangerous for any application to do anything until the problem has been handled, presumably via user intervention.)

A modeless dialog box, on the other hand, is an independent window, almost like a little app of its own. Although it will remain “on top of” the main application window, your app’s main window is still alive. You can issue menu commands or do anything else your main window allows. Modeless dialog boxes are usually used for tool boxes or floating status boxes.

Designing a Menu Class Hierarchy�tc "Designing a Menu Class Hierarchy"�

Menus consist of items, drop-downs, separators, and menu bars. Figuring out how each of these components compares to the others is the first step in designing classes to represent them that will have the greatest efficiency and utility.

Though it might seem your app has just one menu, it almost certainly has more. At any time, your application can have the menus shown in Figure 4.1.

�EMBED MSPowerPoint \s * mergeformat���

Figure 4.1: Standard application menus.

It is best to let menus conform to accepted Windows style. For example, some applications modify the System menu, but I discourage this, because users are not accustomed to looking there for application control.

Some older apps added an exclamation point to a menu item to indicate that choosing that command would produce an instant result. Users didn’t like this approach; it doesn’t provide a feeling of safety. Any action command should be found in a drop-down menu. If you want faster access to it, you can always give it an accelerator key. On the other hand, a command that causes a dialog box to appear (usually to obtain additional information needed to execute the command) should have an ellipsis (...) after the command name.

Floating menus are drop-down menus that are not attached to a fixed menu bar. Because they first became available with Windows 3.1, they aren’t used yet with a lot of applications.

When implementing object classes for several related entities, I find it useful to construct a comparison grid, similar to that shown in Table 4.1. Along the top, I name the objects I have to implement. Down the left side, I list as many attributes of all the objects as I can think of (by “attribute” I mean properties and methods—anything needed by or applying to that object). Then, where the attributes and objects intersect, I put a check mark if the attribute applies to that object.

This table shows that the attributes of a menu item are a superset of those of a separator. Likewise, a drop-down menu expands upon the attributes of a menu item. A menu bar is very much like a drop-down menu with a special relationship to the window that displays it. Since there are relatively few menu bars (compared to the number of drop-downs), it could be implemented as a special case drop-down, without creating a unique object class for it. However, since my goal is to show you how to do things right, menu bars will be implemented in their own, unique class.

Here is our hierarchy:

•	tMenuSeparator, derived from tObject

•	tMenuItem, derived from tMenuSeparator

•	tMenu, derived from tMenuItem

•	tMenuBar, derived from tMenu

tMenuSeparator Class�tc "tMenuSeparator Class"�

A special type of menu item, the separator, cannot be chosen, disabled, or checked. It is a simple line that visually separates groups of items on a menu.

The separator bar groups menu items in a drop-down menu; for example, between the standard menu items Save All and Print, and Printer Setup and Exit, as shown in Figure 4.2

� INCLUDEPICTURE F:\\INSIDER\\FINAL\\FIG04-02.TIF * MERGEFORMAT ���

Figure 4.2 A Separator Bar divides the print commands from the Exit command.

To implement the tMenuSeparator class, we must first copy the CLASSKEL.PAS skeleton, naming the copy MENUS.PAS. Change the appropriate place holders so that the unit begins like this:

Unit Menus;

	(***)

						Interface

	(***)

	Uses

		WinTypes,

		WinProcs,

		Objects,

		OWindows,

		OString;

	Type

		pMenuSeparator = ^tMenuSeparator;

		tMenuSeparator = Object (tObject)

			ParentMenu: tHandle;

			Constructor Init;

			Constructor Load (Var S: tStream);

			Procedure Store (Var S: tStream);

			Procedure Append (aParentMenu: tHandle);

				Virtual;

			End;

You may have noticed there is no Done destructor. That’s because tMenuSeparator has no objects among its properties, just a simple, scalar ParentMenu handle.

When Do You Need Init and Done?

A class needs its own constructor if it has any properties of its own, to initialize them. It only needs a destructor if any of those properties are, themselves, objects.

The Done method, inherited from tObject, is adequate. The only reason we have to supply Init and Load constructors is to give a safe, zero value to ParentMenu:

Constructor tMenuSeparator.Init;

	Begin

	Inherited Init;

	ParentMenu := 0;

	End;

Constructor tMenuSeparator.Load (Var S: tStream);

	Begin

	ParentMenu := 0;

	End;

There is no specific data to load, because there was none stored. In fact, if you look at the Store method, you’ll see it does nothing at all!

Procedure tMenuSeparator.Store (Var S: tStream);

	Begin

	End;

We bother to have a Load constructor because tMenuSeparator objects can be sent to a stream, even if they have no properties. The identifier for the object type arrives on the stream, but Load must be invoked to initialize the VMT. Likewise, when the object is being streamed, the stream mechanism wants to invoke a Store method, even if it has no properties to store. (Remember, tObject does not supply a Store method; we can’t use an inherited one if there isn’t any.)

The reason ParentMenu is initialized to zero (a value that no legitimate menu handle will ever have), rather than loaded from the stream, is because the ParentMenu is not likely to have the same value in any two runs of the application. The ParentMenu property is set when the object is made “real” by appending it to a real menu. We’ll do this in the Append method:

Procedure tMenuSeparator.Append (aParentMenu: tHandle);

	Begin

	ParentMenu := aParentMenu;

	AppendMenu (ParentMenu, mf_Separator, 0, Nil);

	End;

You might have noticed in the method definition that Append is a virtual method. This is an important feature, because tMenuItem and tMenu, the classes we intend to derive from tMenuSeparator, will also have Append methods. Making these methods virtual is essential to their proper behavior.

AppendMenu is a Windows API call used to append either a menu item or a separator to an existing drop-down menu. The second parameter is a flag that indicates a menu separator, and not a menu item, is being added.

There is no satisfactory way for you to remove a separator from a menu. It can be done using the DeleteMenu API function, but you’d have to know the physical position of the separator, because separators have no ID number by which they can be accessed. You could construct a loop using GetMenuIDCount and GetMenuID to locate the separators in a given drop-down menu, but you still couldn’t be certain that any particular separator is the one you want to remove. If you have a menu that changes that dramatically, it’s best to construct a new menu and replace the old one with it—a technique we’ll study in more detail later in this chapter.

Don’t forget to register the new class:

Const

	rMenuSeparator: tStreamRec =

		(

		ObjType: 5001;

		VmtLink: Ofs (TypeOf (tMenuSeparator)^);

		Load: @tMenuSeparator.Load;

		Store: @tMenuSeparator.Store

);

Begin

RegisterType (rMenuSeparator);

End.

tMenuItem Class�tc "tMenuItem Class"�

You can think of menu commands as objects, too. They not only send commands to the application, they also have attributes: they can be enabled or disabled, checked or unchecked. The text of the menu can change during runtime, as well. Manipulating these properties can be a hassle, even with ObjectWindows. This tMenuItem class will make the process substantially easier.

Software objects should parallel, as closely as possible, the real-life objects they represent. Therefore, a tMenuItem’s properties ought to be pretty much the same as an actual menu item’s properties (listed earlier in this chapter). An actual menu item has a caption and a command ID (used to direct the command message to the appropriate dynamic method). In addition, it may be disabled or enabled, and checked or unchecked. It can have a handle to a parent menu, but we’ve already figured out that the tMenuItem class will be derived from the tMenuSeparator class; tMenuItem will inherit the ParentMenu property from tMenuSeparator.

Do Not Use the Disabled Menu State

Windows documentation refers to three mutually exclusive states of a menu item: Enabled, Disabled, and Grayed. A grayed menu is what we would usually call disabled; it does not respond to the mouse or keyboard, and is displayed in gray letters so that it looks disabled. A disabled menu item, on the other hand, is visually indistinguishable from one that is enabled, except that nothing happens when you click on it. This “feature” would seem to have little use except as a cruel joke; and, in fact, when Visual Basic application menus are “disabled,” they are actually grayed. For consistency with Visual Basic and common sense, I’ll therefore refer to the grayed state as “disabled” and pretend that the disabled state does not exist.

There are two possible properties of real-life menu items that we are not going to implement. First, menu items can be bitmaps instead of text, or they can be drawn by the application instead of by Windows, which allows them to appear almost any way you want. However, neither of these attributes is used very often, and almost never in a dialog box-based application, such as would be derived from tDlgAppWindow. Second, real-life menus allow you to specify a bitmap to be used in place of the standard check mark, if the item is checked. You’ll find that checking (with the default check mark) and enabling menu items will satisfy your needs as a programmer 99 percent of the time.

Therefore, after adding these properties, the tMenuItemclass definition looks like this:

Type

	pMenuItem = ^tMenuItem;

	tMenuItem = Object (tMenuSeparator)

		ID: Word;

		Text: tOString;

		Checked,

		Enabled: Boolean;

		Constructor Init (aText: pChar; anID: Word);

		Destructor Done; Virtual;

		Constructor Load (Var S: tStream);

		Procedure Store (Var S: tStream);

		End;

Given the properties, the four “standard” methods practically write themselves:

Constructor tMenuItem.Init (aText: pChar; anID: Word);

	Begin

	Inherited Init;

	ID := anID;

	Text.InitTextC (aText);

	Checked := False;

	Enabled := True;

	End;

Destructor tMenuItem.Done;

	Begin

	Text.Done;

	Inherited Done;

	End;

Constructor tMenuItem.Load (Var S: tStream);

	Begin

	Inherited Load (S);

	S.Read (ID, SizeOf (ID));

	Text.Load (S);

	S.Read (Checked, SizeOf (Checked));

	S.Read (Enabled, SizeOf (Enabled));

	End;

Procedure tMenuItem.Store (Var S: tStream);

	Begin

	Inherited Store (S);

	S.Write (ID, SizeOf (ID));

	Text.Store (S);

	S.Write (Checked, SizeOf (Checked));

	S.Write (Enabled, SizeOf (Enabled));

	End;

The next piece of code appends a tMenuItem object to a real menu:

Procedure tMenuItem.Append (aParentMenu: tHandle);

	Var

		Flags: Word;

	Begin

	ParentMenu := aParentMenu;

	Flags := mf_String;

	If Checked then

		Flags := Flags or mf_Checked;

	If not Enabled then

		Flags := Flags or mf_Grayed;

	AppendMenu (ParentMenu,

		Flags, ID, Text.CString);

	End;

This method is intended to override tMenuSeparator.Append, its ancestor method. It can be invoked any time after a valid ParentMenu handle has been obtained. Since it replaces its ancestor method, not just augments it, we have to be sure to do anything essential that the parent method did: in this case, set the ParentMenu property.

The AppendMenu procedure is quite straightforward, certainly more so than the function that had to be called prior to Windows 3.0! The Flags parameter is a bit-mask; so we have to logically or the appropriate bits together to get the desired effect.

If you want, you can associate a tMenuItem with an existing menu item. Given that you’ve invoked the Init constructor with the proper ID, all you have to do is associate it with the correct ParentMenu:

ParentMenu :=

	GetSubMenu (GetMenu (Window), Position);

Alternatively, you can use tMenuItem in conjunction with a tMenu collection, described later in this chapter.

Once the tMenuItem has been appended, you can do neat things to it. For example, you can use one of the SetText methods to change the text of the item. The actual work is done by SetText_, a private method:

Procedure tMenuItem.SetText_;

	Var

		Flags: Word;

	Begin

	Flags := mf_String or mf_ByCommand;

	If Checked then

		Flags := Flags or mf_Checked;

	If not Enabled then

		Flags := Flags or mf_Grayed;

	If ParentMenu <> 0 then

		ModifyMenu (ParentMenu, ID, Flags, ID, Text.CString);

	End;

This method is very similar to the previous one; the most obvious difference is that ModifyMenu is called instead of AppendMenu—appropriate, since we want to change an existing item rather than add one. The mf_ByCommand flag tells Windows to look among the various items in ParentMenu for the one whose ID is equal to the one specified. The alternative, mf_ByPosition, indicates that ID was simply an index into the physical positions of the menu items, with the first having a position of zero. mf_ByCommand is the default value, but by specifying it, we save ourselves from having to memorize what the default is.

Use the mf_Byposition Flag to Make Changes �to a Menu Item with an Unknown ID

You can use the mf_ByPosition flag to make changes to a menu item whose ID you do not know—for example, an item in the System menu, or one on an application whose menu you’re altering from another application.

SetText_ is intended to be invoked from SetText, SetTextC, or SetTextP:

Procedure tMenuItem.SetText (Const aText: tOString);

	Begin

	Text.SetText (aText);

	SetText_;

	End;

Procedure tMenuItem.SetTextC (aText: pChar);

	Begin

	Text.SetTextC (aText);

	SetText_;

	End;

Procedure tMenuItem.SetTextP (Const aText: String);

	Begin

	Text.SetTextP (aText);

	SetText_;

	End;

The remaining tMenuItem methods implement the changing of the Checked and Enabled properties. If the tMenuItem has already been appended to its ParentMenu, the change is also made to the “real” menu item. These four methods are probably the ones you will call most:

Procedure tMenuItem.Check;

	Begin

	Checked := True;

	If ParentMenu <> 0 then

		CheckMenuItem (ParentMenu, ID,

			mf_ByCommand or mf_Checked);

	End;

Procedure tMenuItem.Uncheck;

	Begin

	Checked := False;

	If ParentMenu <> 0 then

		CheckMenuItem (ParentMenu, ID,

			mf_ByCommand or mf_Unchecked);

	End;

Procedure tMenuItem.Enable;

	Begin

	Enabled := True;

	If ParentMenu <> 0 then

		EnableMenuItem (ParentMenu, ID,

			mf_ByCommand or mf_Enabled);

	End;

Procedure tMenuItem.Disable;

	Begin

	Enabled := False;

	If ParentMenu <> 0 then

		EnableMenuItem (ParentMenu, ID,

			mf_ByCommand or mf_Grayed);

	End;

That completes the programming for the tMenuItem class. Don’t forget to initialize the rMenuItem constant:

Const

	rMenuItem: tStreamRec =

		(

		ObjType: 5002;

		VmtLink: Ofs (TypeOf (tMenuItem)^);

		Load: @tMenuItem.Load;

		Store: @tMenuItem.Store

);

Also, don’t forget to add its registration to the main code section of the unit:

Begin

RegisterType (rMenuSeparator);

RegisterType (rMenuItem);

End.

tMenu Class�tc "tMenu Class"�

Sometimes, most or all of the menu items may need constant care. For example, your program may support user-defined menus or shortcut keys; or you may wish to control access to most functions on a per-user basis for security reasons. The tMenu class provides for monitoring and maintenance of a drop-down menu as a collection of menu items and other drop-downs.

The tMenu class is the most ambitious we’ve yet attempted, partly because it contains a tCollection object as one of its properties. The tCollection class is one of the most powerful in OWL, and we’re going to use it a lot. It serves the purpose of an array in traditional, non-object-oriented programming, but it does much more.

The tMenu class is intended to primarily deal with drop-drown menus. However, objects of this class will also work with floating menus and, with a little modification to the code, the System menu.

As usual, we add the properties first: the handle to the menu this object represents, a pointer to a window object, and the collection of items:

Type

	pMenu = ^tMenu;

	tMenu = Object (tMenuItem)

		Menu: tHandle;

		Items: tCollection;

		Constructor Init (aText: pChar);

		Destructor Done; Virtual;

		Constructor Load (Var S: tStream);

		Procedure Store (Var S: tStream);

		End;

In the Init constructor, we invoke the inherited initialization. The setting of the Menu property is not to an innocuous zero value, however. A Windows menu is actually created, and its handle is stored in the Menu property. A Windows menu is an independent entity that need not be displayed (although it isn’t much use until it is). Thus, we create one in the Init and Load constructors, and destroy it in the Done destructor.

Init must also invoke the Init constructor of the Items property. Items is a tCollection; its Init constructor has two parameters: the initial number of members or elements, and a number to increase that count should the initial number prove inadequate. There’s the first improvement over arrays: a tCollection object can grow dynamically until the maximum count of 16,380 elements, or until memory runs out.

Constructor tMenu.Init (aText: pChar);

	Begin

	Inherited Init (aText, 0);

	Menu := CreateMenu;

	Items.Init (10, 5);

	End;

The Done destructor is the expected counterpart to Init. One interesting point is the call to DestroyMenu. Like most Windows objects, and BPW objects as well, what has been created must be destroyed; everything is done in pairs. However, if a submenu has been attached to a parent menu and the parent menu is destroyed, the submenu is destroyed at the same time; so we only have to destroy the tMenu object if it has not already been assigned to a parent.

Destructor tMenu.Done;

	Begin

	If ParentMenu = 0 then

		DestroyMenu (Menu);

	Items.Done;

	Inherited Done;

	End;

Before we look at Load, let’s look at the three circumstances in which tMenu will be used:

•	A set of menus is being built programmatically, either during program initialization or during the app’s run. The tMenu class and its components are used both to define menu items and to control them. The Init constructor we’ve already defined is appropriate for this.

•	A set of menus was streamed, via Store, to a file (we’ll deal with streaming in more detail later). Now it’s been read back in, and will be attached to the current application. This might happen in an application that provided for user-customizable menus; Load is the constructor that is always used for re-creating streamed objects.

•	The actual menu may be kept in the resource file and loaded automatically, as is the case with our tDlgAppWindow applications. tMenu will have to “read” the existing menu. This will probably be the major use of tMenu. We’ll define an additional constructor (InitResource) later in this chapter.

The second case is the only one in which you would use Load. With that in mind, let’s look at it:

Constructor tMenu.Load (Var S: tStream);

	Procedure AppendItem (Item: pMenuSeparator); Far;

		Begin

		Item^.Append (Menu);

		End;

	Begin

	Inherited Load (S);

	Menu := CreateMenu;

	Items.Load (S);

	Items.ForEach (@AppendItem);

	End;

Ignore the nested procedure, AppendItem, for a moment. As in Init, we create a Windows menu and store its handle. Then we invoke Items’ Load constructor. A tCollection’s Load method thoughtfully loads all the objects that were in the tCollection when it was stored. That will give us the menu text, ID, and enabled/checked state. It will even load separators and nested tMenus for us.

If you created a tMenu with the Init constructor, you would then create more tMenu, tMenuItem, and tMenuSeparator objects, and use their Append methods to attach them. But, in this case, those components have all been created by the Load method. Therefore, the Append operation should be automatic, and it should happen as part of Load. That’s why, using the ForEach method, we direct the Items collection to invoke each item’s Append method. Since this is a virtual method, the appropriate method will be invoked whether the particular item is a separator, item, or drop-down menu. (We haven’t defined the tMenu.Append method yet, but we will.)

The ForEach method invokes, for each element it owns, a procedure you supply. The procedure can do anything you like. ForEach is exactly like setting up a for loop on the collection. But one advantage to using ForEach is that when you define the procedure that gets called, you can make the parameter a pointer to the actual kinds of objects you stored in the collection. They were actually stored simply as pointers; if you accessed them in a for loop, you would have to cast the pointers to the appropriate data type before you used them:

For i := 1 to Items.Count do

	pMenuSeparator(Items.At(i-1))^.Append (Menu);

The biggest disadvantage with this method, though, is that it makes you type a great deal of code, most of which manipulates a computer data structure, only a little of which actually deals with the problem you’re trying to solve. ForEach says exactly what it does and does it.

ForEach Must Be Passed the Address �of a Procedure

Both the online documentation and the TPW Reference Guide are wrong. They state that ForEach should be passed the address of a function. It should, instead, be passed the address of a non-global, far procedure. The Borland Pascal online help and reference guide are correct.

For completeness’ sake, here’s the Store method:

Procedure tMenu.Store (Var S: tStream);

	Begin

	Inherited Store (S);

	Items.Store (S);

	End;

The tMenu collections represent not only an application’s menu bar, but drop-down menus attached to the menu bar, as well. This means that tMenu must have an Append method, just like tMenuItems and tMenuSeparators:

Procedure tMenu.Append (aParentMenu: tHandle);

	Var

		Flags: Word;

	Begin

	ParentMenu := aParentMenu;

	Flags := mf_Popup;

	If not Enabled then

		Flags := Flags or mf_Grayed;

	AppendMenu (ParentMenu,

		Flags, Menu, Text.CString);

	End;

As in the tMenuItem class, this Append method overrides, rather than augments, the ancestor method of the same name; so we have to set the ParentMenu property.

Conceptually, a tMenu is a collection of menu items and drop-down menus. But it’s also similar to a tMenuItem in that it has a caption and can be enabled or disabled. We would like it to inherit from both tMenuItem and tCollection. We can do that by deriving it from tMenuItem, giving it a tCollection property, and implementing methods that duplicate the methods of tCollection. The first and most important of these is Insert, the method tCollection uses to add items to its collection:

Procedure tMenu.Insert (Item: pMenuSeparator);

	Begin

	Item^.Append (Menu);

	Items.Insert (Item);

	End;

Besides reflecting the call to the Items property, we also want to append the item to the actual Windows menu. The tMenu.Insert method doesn’t have to know what kind of item is being added; the Item parameter can be a pointer to a tMenuSeparator or any descendants of tMenuSeparator. It won’t matter; since Append is a virtual function, the correct method will always be invoked.

It would be nice if there were a method that would let us create a tMenuItem and insert it into an existing tMenu in one operation. Let’s create one and call it AddItem:

Procedure tMenu.AddItem (aText: pChar; anID: Word);

	Begin

	Insert (New (pMenuItem, Init (aText, anID)));

	End;

While this method doesn’t save you a lot of work, the whole point of object-oriented programming is to make things easier for you so you can work faster and more productively. For that reason, we’ll also add an AddSeparator method:

Procedure tMenu.AddSeparator;

	Begin

	Insert (New (pMenuSeparator, Init));

	End;

It may have occurred to you that if AddItem is used to build up a menu, you won’t have a residual tMenuItem instance to manipulate. If you want to check a given item, or disable it, or change its text, how can you access it?

There are two ways you might consider: the first is to use AddItem only for items you expect to not manipulate. File..Exit, for example, will never be checked or disabled. You can create regular tMenuItems for items you do expect to manipulate, and add them to the tMenu with its Insert method. I recommend this method for items you expect to manipulate on a frequent basis.

The second technique is to create a FindID method, which will search through the tMenu, including nested menus, until it locates the command in which you are interested:

Function tMenu.FindID (Key: Word): pMenuItem;

	Var

		m: Word;

		Item: pMenuItem;

	Begin

	FindID := Nil;

	For m := 1 to Items.Count do

		Begin

		Item := Items.At (Pred (m));

		If TypeOf (Item^) = TypeOf (tMenuItem) then

			Begin

			If Item^.ID = Key then

				Begin

				FindID := Item;

				Exit;

				End;

			End

		else If TypeOf (Item^) = TypeOf (tMenu) then

			Begin

			Item := pMenu(Item)^.FindID (Key);

			If Assigned (Item) then

				Begin

				FindID := Item;

				Exit;

				End;

			End;

		End;

	End;

This method is an interesting example of recursion in that the method invokes itself. If, as it steps through its list of members, it encounters a nested tMenu instance, it will invoke that menu’s FindID method—which is, of course, this method. But don’t let the thought make you dizzy. The nested FindID will work just as you’d want. The trick to making recursion work for you is: don’t change global values (there are rare exceptions to this), and make sure there is an exit condition so the recursion doesn’t try to nest itself indefinitely. (It can’t; you’ll run out of stack space, first.)

You’ve seen the TypeOf function before, in the declarations of the r constants for object class registration; but I’ve never explained it. It is not a magic function, revealing information known only to the compiler. Otherwise, it would not be able to identify the object type of a pointer, as it does in the FindID method. Rather, it accesses the VMT of the object. Remember, VMTs are a by-product of an object that has even one virtual or dynamic method. If you try to use TypeOf on an object without a VMT, you’ll get an error. You’re safe with tMenu, tMenuItem, and tMenuSeparator objects, because each has tObject as its most distant ancestor. tObject defines the Done destructor as a virtual method, so all tObjects and their descendants have VMTs.

TypeOf Omitted from Online Help

The TypeOf function was inadvertently omitted from the online help. It is documented on page 112 of the Turbo Pascal for Windows Programmer’s Guide.

tMenuBar Class�tc "tMenuBar Class"�

Eventually, you’re going to want to actually attach the menu you’ve constructed or loaded to a real window and use it. You might, in addition, want to detach it so another menu can be used in its place. The tMenuBar class provides you with these abilities and serves as an anchor for tMenu drop-downs.

The tMenuBar class is our last descendent along the family tree that began with tMenuSeparator. It adds one property and two methods to tMenu:

Type

	pMenuBar = ^tMenuBar;

	tMenuBar = Object (tMenu)

		Window: pWindowsObject;

		Constructor Init;

		Destructor Done; Virtual;

		Procedure SetWindow

			(aWindow: pWindowsObject);

		Procedure Refresh;

		End;

The Init constructor has no parameters; it exists only to provide a clean interface to its parent constructor and, of course, to initialize the Window property. tMenu drop-downs have captions, but a tMenuBar never does. So Init simply calls its parent Init with a null caption and sets the Window property to Nil:

Constructor tMenuBar.Init;

	Begin

	Inherited Init ('');

	Window := Nil;

	End;

The Window property points out the special relationship a menu bar has with the window to which it belongs. If a menu bar is attached to a window that is then destroyed, its menu is automatically destroyed, as well. This becomes awkward from an OWL viewpoint, because we would like to preserve the balance of destroying anything in our Done method that we created in our Init method. The easiest way to deal with this is to use the Window property to let us know whether the menu is currently in use. If it is, the Window property will point to a valid windows object. If not, Window will contain the special Nil value:

Destructor tMenuBar.Done;

	Begin

	If Assigned (Window) then

		SetMenu (Window^.hWindow, 0);

	Inherited Done;

	End;

By detaching the menu from the window, as is done above, we can take responsibility for destroying the menus ourselves. (The tMenu.Done method will invoke Done for the Items collection, which in turn invokes Done for each of its members. This will do the trick.)

There is no specific Store method; the one inherited from tMenu is perfectly adequate. We do need a Load constructor, though, because tMenuBar has added a property of its own (Window), which must be initialized:

Constructor tMenuBar.Load (Var S: tStream);

	Begin

	Inherited Load (S);

	Window := Nil;

	End;

Attaching the menu to the window in the first place, from the point of view of the tMenuBar, means setting the Window property. Since we always name object methods from the point of view of the object, we obtain the SetWindow method:

Procedure tMenuBar.SetWindow

		(aWindow: pWindowsObject);

	Begin

	If not Assigned (aWindow) then

		Begin

		If Assigned (Window) then

			Begin

			SetMenu (Window^.hWindow, 0);

			Window := Nil;

			End;

		End

	else

		Begin

		Window := aWindow;

		SetMenu (Window^.hWindow, Menu);

		End;

	End;

Any time a change is made to the top-level menu, an application should invoke DrawMenuBar. To be consistent with other OWL classes, we’ll encapsulate DrawMenuBar within a method and call it Refresh:

Procedure tMenuBar.Refresh;

	Begin

	If Assigned (Window) then

		DrawMenuBar (Window^.hWindow);

	End;

Any time you make a change to the menu and it refuses to show up, you’ve probably forgotten to invoke DrawMenuBar. However, you don’t need to invoke Refresh from SetWindow; the SetMenu API call invokes DrawMenuBar for you.

Making a Menu Object Reflect Reality�tc "Making a Menu Object Reflect Reality"�

The hierarchy of classes we’ve created to represent menus can be used to build a new menu as an application is running. However, most menus are designed as resources and simply loaded into place when the application starts. This is the preferred behavior, in fact, because it makes an application’s language independence easy to achieve.

However, we should not have to give up object-oriented convenience just because a menu came from an application’s resource pool. In the next few sections, we’ll learn how to make menu objects “read” actual menus and build up an internal structure that reflects the physical menu.

The GetMenuDetail Procedure�tc "The GetMenuDetail Procedure"�

Having a tMenuItem object, and giving it text and an ID, doesn’t guarantee that it will reflect the reality of a pre-existing menu item. If the actual menu was there first, it may be smarter to fill the fields of a tMenuItem with detail from the Windows menu itself. This procedure helps do that.

GetMenuDetail is the first code we’ve seen that is not an object method, although a method may call it. It works on the existing Windows menu (as opposed to a tMenu object) attached to the main window of your application.

GetMenuDetail isn’t intended for use outside the MENUS unit, so we’ll place it in the Implementation section with no forward definition in the Interface section. Ahead of it, though, we must declare a couple of types and a constant:

Type

	tMenuStates =

		(

		ms_Grayed,	{ $0001 }

		ms_Disabled,	{ $0002 }

		ms_Bitmap,	{ $0004 }

		ms_Checked,	{ $0008 }

		ms_OwnerDraw,	{ $0010 }

		ms_UseCheckBitmaps,	{ $0020 }

		ms_Filler1,	{ $0040 }

		ms_Filler2,	{ $0080 }

		ms_Popup,	{ $0100 }

		ms_MenuBarBreak,	{ $0200 }

		ms_MenuBreak,	{ $0400 }

		ms_Separator	{ $0800 }

);

	tMenuState = Set of tMenuStates;

Const

	MaxMenuCaption = 64;

The tMenuStates enumerated type and the tMenuStates set type are defined in preparation for a programming trick I’ll explain shortly. MaxMenuCaption is a constant that will be used to size character arrays passed to GetMenuDetail. The value 64 is arbitrary; you can make it any size you like, since menu captions don’t have a limit.

GetMenuDetail itself takes up fewer lines than the type definitions:

Procedure GetMenuDetail

		(

		Menu: tHandle;

		i: Word;

		Caption: pChar;

		Var ID: Integer;

		Var MenuState: tMenuState

);

	Function GetMenuPos (ID: Word): Word;

		Var

			Count, m: Word;

		Begin

		Count := GetMenuItemCount (Menu);

		For m := 0 to (Count-1) do

			If GetMenuItemId (Menu, m) = ID then

				Begin

				GetMenuPos := m;

				Exit;

				End;

		GetMenuPos := 0;

		End;

	Var

		MenuState_: Word absolute MenuState;

	Const

		Separator = 0;

	Begin

	if i < 100 then

		ID := GetMenuItemID (Menu, i)

	else

		Begin

		ID := i;

		i := GetMenuPos (ID);

		End;

	If ID <> Separator then

		Begin

		GetMenuString (Menu, i,

			Caption, MaxMenuCaption, mf_ByPosition);

		MenuState_ :=

			GetMenuState (Menu, i, mf_ByPosition);

		End

	else

		Begin

		Caption[0] := #0;

		MenuState := [];

		End;

	End;

GetMenuItemID simply returns a command ID, given a menu handle and offset into the menu. If the item being queried is a nested menu, ID will equal -1; if it is a separator, it will equal 0. GetMenuString, which is called only for menu items and nested menus, returns the caption text associated with that item. Now here’s the trick I mentioned earlier. It has to do with the flags returned by GetMenuState.

Those who know Turbo Pascal have learned to appreciate its advanced features, such as the use of sets. A set is implemented as a collection of bits, but we don’t normally worry about that. We just ask if a given, possible component is in a specified set, and get a True or False in return.

But Windows wasn’t written in Turbo Pascal; it was written in C, which, like C++, doesn’t have sets. Sets are still needed, but they are usually called “flags” and are jammed into a word or double word of memory; you have to code logical operations involving bitmasks to test for the existence of any flag in which you are interested. Note that this is the same thing the computer has to do, anyway. The difference is that, what the C programmer must do, the Turbo/Borland Pascal compiler does for us.

Unfortunately, when Borland created the WinTypes and WinProcs units, they performed a very straight-forward conversion of the original C API calls into Pascal. They did not attempt to make the calling sequences aesthetically consistent with the new language, and so bit flags were not converted into sets.

The GetMenuState function returns a set of these bit flags, but I was determined to deal with them on BPW’s terms, not C’s. I inspected the values of each of the possible flags, mapping which bit each one represented. I then organized them into the tMenuStates type, knowing that a set of those enumerated constants would then be exactly equivalent to a flag word in which each of those bits was “on.”

Borland Pascal syntax doesn’t allow me to cast a set to a word, so I had to fool the compiler by creating the MenuState_ variable, using the absolute keyword to place it in the same physical space as MenuState. An assignment from GetMenuState to MenuState_, then, is the same as an assignment to MenuState—except that MenuState_ is a word variable, suitable for C-style flags, and MenuState is a set, suitable for testing with the in keyword.

Once you understand this trick, the code that uses it is much clearer in terms of the problem being solved than a raft of bitwise tests could ever be—and with no additional computer time.

The tMenuItem.InitResource Constructor�tc "The tMenuItem.InitResource Constructor"�

Often, your menu will be stored as a resource in your resource �file, bound by the Borland Pascal linker to your application’s executable file. That doesn’t mean you don’t want the manipulatory advantages of the tMenuItem class. But how can you make sure your menu objects reflect the reality of your menu resource? The answer is the InitResource constructor, which reads the actual menu.

In OWL, constructors that associate an object with an on-screen component, automatically built by virtue of being among the application’s resources, are named InitResource, so that’s what we’ll name ours.

For an individual tMenuItem to read its real-life counterpart, it must be supplied with a handle to the real menu and a zero-based offset into that menu. Given that information, and the GetMenuDetail procedure described in the previous section, the rest is easy:

Constructor tMenuItem.InitResource

		(aParentMenu: tHandle; Position: Word);

	Var

		aCaption: Array [0..MaxMenuCaption-1] of Char;

		MenuState: tMenuState;

	Begin

	Inherited Init;

	ParentMenu := aParentMenu;

	GetMenuDetail (ParentMenu, Position,

		aCaption, Integer (ID), MenuState);

	Text.InitTextC (aCaption);

	Checked := ms_Checked in MenuState;

	Enabled := not (ms_Disabled in MenuState);

	End;

We have to cast ID as an integer because that’s what GetMenuDetail expects. (Remember, within GetMenuDetail, the ID might be a -1 if the item being queried is a nested menu. This constructor should only be invoked for what are known to be legitimate menu items.)

The InitResource Constructors�tc "The InitResource Constructors"�

Occasionally, you’ll need an entire tMenuBar to be initialized from the actual, resource-supplied menu. The tMenuBar.InitResource constructor “reads” the real-life menu and creates appropriate tMenuItem, tMenuSeparator, and tMenu members for it.

tMenuBar, as the highest level class of the menu hierarchy, can implement an InitResource constructor by invoking InitResource constructors of each object in its collection. Each item, in turn, must either build itself or, if it, too, is a collection, must invoke its components’ InitResource constructors.

We’ll start with the top level. The tMenuBar.InitResource method is trivial:

Constructor tMenuBar.InitResource

		(aWindow: pWindowsObject);

	Begin

	Window := aWindow;

	Inherited InitResource (GetMenu (Window^.hWindow), '');

	End;

This constructor sets the Window property, gets the handle of the window’s menu, and passes that to tMenu’s InitResource constructor. That’s where the work is going to take place. I’d better warn you, though: it’s a big method. Here’s the header and local variables:

Constructor tMenu.InitResource

		(aMenu: hMenu; Caption: pChar);

	Var

		i, ItemCount: Word;

		anID: Integer;

		aCaption: Array[0..MaxMenuCaption-1] of Char;

		MenuState: tMenuState;

Note that the parameters to this constructor are a handle to the actual menu, and a caption. When this constructor is called by tMenuBar.InitResource, the caption will consist of a null string. But, as you’ll see, tMenu.InitResource is recursive. It will invoke itself to create any drop-down menus, and these do have captions.

For clarity, I’ve split most of the code in InitResource into nested procedures. Pascal syntax requires that the nested procedures must actually be included next, before the code that invokes them. But I think trying to explain the nested procedures before you’ve seen the context in which they are called would be harder to understand—certainly harder to explain! So let’s jump to the main code block of InitResource:

Begin

Inherited Init (Caption, 0);

ItemCount := GetMenuItemCount (aMenu);

Items.Init (ItemCount, 5);

Menu := aMenu;

For i := 0 to (Pred (ItemCount) do

	Begin

	GetMenuDetail

		(Menu, i, Caption, anID, MenuState);

	Case anID of

		-1:		CreateSubMenu

						(GetSubMenu (Menu, i));

		 0:		CreateSeparator;

		else		CreateItem;

		End;

	End;

End;

The first point of interest is that we are able to obtain a count of menu items from the system, using the GetMenuItemCount API call. Since we have it, we go ahead and use the count when allocating the Items property—after all, why allocate space for more items than are actually present? Items can still grow, if needed, to accommodate any items that might be added later.

Items are stored in a tCollection indexed from zero to an element numbered one less than the count of items in the collection. This is the same indexing scheme used by the API menu functions. The for loop marches from zero to the Pred (one less than) of the ItemCount.

GetMenuDetail is the function we built earlier. It will query the menu, obtaining the caption, command ID, and state of the item. The ID can be used to determine what kind of entity (nested drop-down, separator, or item) was retrieved. CreateSubMenu, CreateSeparator, or CreateItem are called, respectively. Looked at this way, and knowing that CreateSubMenu triggers the recursive use of InitResource, the task seems pretty simple. Note that when you invoke CreateSubMenu, it is passed the handle to the nested menu it is to read:

Procedure CreateSubMenu (Submenu: tHandle);

	Var

		Dropdown: pMenu;

	Begin

	Dropdown :=

		New (pMenu, InitResource (SubMenu, Caption));

	Dropdown^.Enabled :=

		(mf_Disabled in MenuState) or

		(mf_Grayed in MenuState);

	Dropdown^.ParentMenu := Menu;

	Items.Insert (Dropdown);

	End;

It is in the first executable statement that the recursion occurs. CreateSubMenu creates a new tMenu object on the heap, using the InitResource constructor and passing it the handle to the submenu we wish to read. That invocation of InitResource will populate the new object’s Items properties with the components of that submenu—even if some of them are submenus in their own right. Eventually, it will finish, and execution will resume with the setting of the Enabled flag and the ParentMenu property. Finally, the new drop-down menu is inserted into the owning menu’s Items collection and we’re done.

The nested procedures for creating separators and menu items are trivial:

Procedure CreateSeparator;

	Var

		Separator: pMenuSeparator;

	Begin

	Separator := New (pMenuSeparator, Init);

	Separator^.ParentMenu := Menu;

	Items.Insert (Separator);

	End;

Procedure CreateItem;

	Var

		Item: pMenuItem;

	Begin

	Item := New (pMenuItem, Init (Caption, anID));

	Item^.Checked := mf_Checked in MenuState;

	Item^.Enabled :=

		(mf_Disabled in MenuState) or

		(mf_Grayed in MenuState);

	Item^.ParentMenu := Menu;

	Items.Insert (Item);

	End;

Testing the Menu Class Hierarchy�tc "Testing the Menu Class Hierarchy"�

In incremental development, we try to test each component as soon and as often as possible during its development. Hopefully, you’ve been doing this all through this chapter. Compiling after each method is added provides an inexpensive means of checking that the syntax is right. A tMenuItem object can be created and appended to a real menu, disabled, enabled and checked.

At this point, we have implemented the entire menu class hierarchy; it’s time for a final test, one that coincidentally provides an example of a useful, real-life technique.

Using tMenuBar to Switch Menu Bars�tc "Using tMenuBar to Switch Menu Bars"�

In more complex applications, sometimes the entire menu is changed according to the circumstances. This is commonly done in Multiple Document Interface (MDI) applications, for instance, or in applications with user-customizable menus. The tMenuBar class provides an easy way to maintain a raft of menus and switch from one to another, as needed.

The best way to test the tMenuBar class is to use it to switch menus in a running application. To create such a test app, make a copy of DLGSKEL.PAS called BARTEST.PAS. Change the internal program name to BarTest. Add Menu1 and Menu2 properties to the tMainDlg definition:

Type

	pMainDlg = ^tMainDlg;

	tMainDlg = Object (tDlgAppWindow)

		Menu1, Menu2: tMenuBar;

		Constructor Init;

		Destructor Done; Virtual;

		Procedure SetupWindow; Virtual;

		Procedure cmFileNew (Var Msg: tMessage);

			Virtual cm_First + cm_FileNew;

		Procedure cmFileMenu1 (Var Msg: tMessage);

			Virtual cm_First + cm_FileMenu1;

		Procedure cmFileMenu2 (Var Msg: tMessage);

			Virtual cm_First + cm_FileMenu2;

		End;

Because the new properties are objects, we have to supply Init and Done methods to create and destroy them:

Constructor tMainDlg.Init;

	Var

		DropDown: pMenu;

	Begin

	Inherited Init;

	Menu1.Init;

	DropDown := New (pMenu, Init ('&File'));

	DropDown^.AddItem ('Change to Menu &2',

		cm_FileMenu2);

	DropDown^.AddSeparator;

	DropDown^.AddItem ('E&xit', cm_Exit);

	Menu1.Insert (DropDown);

	DropDown := New (pMenu, Init ('&Help'));

	DropDown^.AddItem ('A&bout BarTest...',

		cm_HelpAbout);

	Menu1.Insert (DropDown);

	Menu2.Init;

	DropDown := New (pMenu, Init ('&File'));

	DropDown^.AddItem ('Change back to Menu &1',

		cm_FileNew);

	DropDown^.AddSeparator;

	DropDown^.AddItem ('E&xit', cm_Exit);

	Menu2.Insert (DropDown);

	DropDown := New (pMenu, Init ('&Help'));

	DropDown^.AddItem ('A&bout BarTest...',

		cm_HelpAbout);

	Menu2.Insert (DropDown);

	End;

In this constructor, we actually build up the two new menus. We can do this now (rather than waiting for SetupWindow) because, unlike the InitResource constructor, the tMenu.Init constructor actually creates an empty menu; it isn’t trying to access one belonging to an application window.

The Done method just disposes of the properties:

Destructor tMainDlg.Done;

	Begin

	Menu1.Done;

	Menu2.Done;

	Inherited Done;

	End;

We do augment the tDlgAppWindow.SetupWindow method so we can change the text of one of the regular menu items:

Procedure tMainDlg.SetupWindow;

	Var

		FileNewMenu: tMenuItem;

	Begin

	Inherited SetupWindow;

	FileNewMenu.InitResource

		(GetSubMenu (GetMenu (hWindow), 0), 0);

	FileNewMenu.SetText ('Change to Menu &1');

	FileNewMenu.Done;

	End;

In a real application, you might need to customize a default menu with user information, or something pertaining to the initial data file. So it’s nice to know the SetText method works.

The File..New command text was changed to “Change to Menu 1,” but we couldn’t change the command ID of an existing command. So, when the user selects that menu item, it will still be the cmFileNew method that will be involved. In response to that message, we simply pass control on to the cmFileMenu1 command handler:

Procedure tMainDlg.cmFileNew (Var Msg: tMessage);

	Begin

	cmFileMenu1 (Msg);

	End;

The cmFileMenu1 and cmFileMenu2 handlers are mirror images of each other:

Procedure tMainDlg.cmFileMenu1 (Var Msg: tMessage);

	Begin

	Menu2.SetWindow (Nil);

	Menu1.SetWindow (@Self);

	End;

Procedure tMainDlg.cmFileMenu2 (Var Msg: tMessage);

	Begin

	Menu1.SetWindow (Nil);

	Menu2.SetWindow (@Self);

	End;

We simply make sure the old menu is removed and the new one installed. Running BarTest, the application looks just like DlgSkel last time we ran it. After selecting the File..Change to Menu 1 command, and dropping the File menu down again, we see that it has, indeed, changed.

Remember that, even though all three menu bars—the original and the two ringers we created—have File drop-downs, they’re still different menus. Even if you create two drop-downs with identical contents, they’re still physically different menus, with menu handles all their own.

