Consider simple carpenter’s tools: If you have a hammer, you can drive nails. If you add a flathead screwdriver, you add the ability to insert or remove flathead screws, but your ability to drive nails is unenhanced.

Now consider stereo components. If you have an amplifier and a cassette deck, you can listen to tapes. If you add a CD player, you add the ability to listen to CDs...but, thanks to the interconnectivity of the system, you can also record them. Add a VCR and you can add a soundtrack to personal videos from either cassette or CD; you can record video soundtracks on cassette, or create six-hour music-only videos from CD or cassette or any combination.

DOS applications are like carpenter’s tools. Add an app, add an ability. Windows is more like stereo components; add an app, multiply the abilities.

DDE is like stereo cables; it connects the applications. In this chapter, you'll learn how to make sure your applications are more like stereo components than carpenter’s tools.

Working with DDE Concepts�tc "Working with DDE Concepts"�

In the beginning, there were windows, and the windows spoke to each other via messages. Then came DDE, with which one application’s windows could speak to those of another. Finally DDEML hid all these messages beaneath a blanket of function calls. Still, to use DDEML it is useful to understand what’s going on beneath that blanket.

Understanding DDE Basics�tc "Understanding DDE Basics"�

DDE (Dynamic Data Exchange) is a way for applications to share data under program control. Although it isn’t essential that you be familiar with the original DDE specification to use DDEML (Dynamic Data Exchange Management Library), it may help you understand the Management Library better if you have some idea of the Windows messages that make DDEML work.

DDE is a protocol—a defined manner of exchanging information. DDE defines a series of messages that can be sent to another DDE-compliant application, and defines which messages to expect in return. It does not provide any API functions to implement or enforce this protocol. (That’s what DDEML is for.)

Nearly all the components of Windows are object-like, in that they manage their own methods and properties, must be sent messages that instruct them what to do, and send messages to their parents in return. (Messages and the code that responds to them are much the same as methods.)

ObjectWindows hides much of this. For example, take the tXStatic.SetText method we wrote. This method invokes SetWindowText from the Windows API. According to the online help, SetWindowText “causes a WM_SETTEXT message to be sent to the given window or control.” Many of the Windows API functions are actually just more convenient calling sequences for standard Windows messages; and, at its heart, ObjectWindows is a wrapper for the Windows API calls. What makes Windows work are the messages sent to the component �windows.

Since an application is just a window with the overlapped style (and that window’s child windows), you might think that one application could communicate with another simply by sending it messages; and you’re right.

But there are problems you’ll have to solve, such as what to do if the other application isn’t running, has never been installed, is an earlier or later version, or crashes while it is processing a message.

 The DDEML protocol has already defined solutions to these �problems.

At the heart of the DDE protocol is the conversation, the set of messages to and from particular windows that begins with initialization and ends with termination. The only DDE communication that takes place outside a conversation is the request for a conversation—and even that is considered just the first transaction in a conversation, if it is accepted.

A DDE client is the participant who initiates the request for a conversation. Any application that accepts the request becomes a DDE server. It’s possible for a given application to be both client and server, but never in the same conversation, unless the application is having the conversation with itself.

When a conversation request is made, the request is made for a particular service. (In some of the documentation, “application” is used as a synonym for “service.”) At the same time, a topic must be specified. Services and topics are simply labels used by DDE clients and servers to identify the range of messages that may be received in the course of the conversation. Together with a third term, item, they create a three-tiered hierarchy similar to the arrangement of .INI files.

A general-purpose client might ask for the Nil service, which would return an acceptance from every server running; the client could then pick the one it wanted to continue with. Likewise, a Nil topic returns an acceptance for each topic that service supports. More often, however, a client knows what it needs and asks for it specifically.

Within the context of a service and topic, a server provides access to items. Like the service and topic, an item is referenced by name. Depending on which transactions the server supports, the client can ask for the value of an item, ask to be advised any time the value changes, and can poke a new value into the item.

Unrelated to any item, a client can also ask the server to execute commands. The format of commands is defined by the server.

A DDE-compliant application is supposed to support a special “System” topic. This topic provides a list of topics, and a list of items supported by each topic.

Every DDE transaction must be acknowledged. This is accomplished via a special “acknowledge” message that must arrive within a specific amount of time after the transaction is initiated.

The DDE protocol was published with the Windows SDK Version 2. Programmers found it intricate and, in some cases, ambiguous. The timing and order of several of the messages were hard to follow, let alone debug. The final arbiter became Microsoft Excel, whose macro language allowed it to perform as client or server. If you could make your application communicate with Excel, you could figure you had the DDE right, if only by association. That remained the case until shortly before Windows 3.1, when Microsoft released DDEML.

Understanding DDEML Basics�tc "Understanding DDEML Basics"�

The original DDE specification, while powerful, was also somewhat ambiguous. Many applications advertised as supporting DDE were actually unable to communicate in a meaningful way with other applications that made the same claim. Finally, Microsoft took mercy. DDEML relieved us of having to deal with the nine DDE messages, and replaced them with an API of 27 function calls. This was more complete, in the way that a deluge is more complete than a flood; but at least the ambiguities were resolved.

As mentioned in the previous section, DDE conversations involve services, topics, and items. Each of these entities is named, but a pointer to a string does not supply the name. Instead, an atom manager deals with these short strings.

Likewise, there is a data manager to deal with larger blocks of memory. These functions equate to the global heap functions we talked about last chapter, but they return 32-bit handles instead of 16-bit handles. The extra 16 bits enables DDEML to keep track of them.

There are also functions for initiating and terminating conversations, for registering and unregistering a server’s service name, and for initiating and terminating use of DDEML itself.

The largest requirement of DDEML, and the biggest challenge to using it within the context of an ObjectWindows application, is that of the callback function. This function serves the same purpose as a window procedure for a window: It is invoked with a transaction code and must route the transaction to the appropriate handler for the code.

I’ve deliberately presented this information as an extremely high-level overview, because DDEML involves so many functions, constants, and details that it is easy to get lost in the morass of components. In principle, DDEML is really pretty simple; by using ObjectWindows to encapsulate it, we’ll be able to add one last layer that will finally simplify the whole thing so you can quit worrying about DDE and get to work building DDE-compliant applications.

Creating the tDde Class�tc "Creating the tDde Class"�

Now that you have an idea of what underlies the DDE mechanisms, let’s look at some specific components. As objects, these components will become properties of the encompassing tDde class. Specifically, we’ll need a new string class to encapsulate the atom manager, classes to represent items, topics (which include items), services (which include topics), and a tConversation class.

Managing String Atoms�tc "Managing String Atoms"�

Many of the strings used by DDEML must first be converted into “atoms,” 32-bit values that represent the string. By deriving a class from tOString, we’ll be able to handle this new format with almost no effort.

There are many places in Windows where strings are used to identify things: window class names, for example. Referencing a window class by name is very convenient, yet for Windows to make frequent string comparisons would be inefficient. In answer to this, the designers of Windows provided atom tables. These are tables that can contain many small strings that are then equated to integers. The integers are derived from a hashing algorithm, a way of deducing a number from a string that can then be used to quickly locate that string in the table. A given string always returns the same integer, so if two strings produce integers that match, we know the strings also match. (The algorithm is not case sensitive, so the case of the strings may differ.)

Although Windows makes extensive use of atoms, application programs don’t seem to use them much except for one area: DDE, where atoms are used for service, topic, and item names.

Originally, there were two groups of atom management functions: a set for the local atom table and a set for global atom tables. Only global atoms can be shared with other applications, and these are the ones used by the DDE messages. These are also at the heart of the “string handle” DDEML functions.

We’re going to derive a class from tOString that will deal conveniently with DDEML atoms. This will also be the start for the DDE unit, so copy CLASSKEL.PAS as DDE.PAS and start it out like this:

Unit DDE;

	(***)

						Interface

	(***)

	Uses

		WinTypes,

		WinProcs,

		Objects,

		OWindows,

		OString,

		DDEML;

	Type

		pAString = ^tAString;

		tAString = Object (tOString)

			Atom: hSz;

			Constructor Init (aMaxLength: Word);

			Constructor InitTextC (C: pChar);

			Constructor InitTextP (const P: String);

			Constructor InitText (const O: tOString);

			Constructor InitTextA (A: hSz);

			Destructor Done; Virtual;

			Procedure SetText_

				(aText: pChar; aLength: Word); Virtual;

			Procedure Clear; Virtual;

			Procedure SetTextA (anAtom: hSz);

			Procedure RetainOwnership;

			Function MatchesA (anAtom: hSz): Boolean;

			Function GetAtom: hSz;

			End;

	Type

		pDde = ^tDde;

		tDde = Object (tObject)

			Instance: LongInt;

			End;

	(***)

					Implementation

	(***)

	Var

		MyDde: pDde;

The brief definition of tDde and the variable MyDde are required because all the atom functions require access to tDde.Instance, which will be explained later in this chapter; for now, we need this much in order to compile cleanly.

tAString adds one property to tOString: Atom. This property will contain the value returned by the DDEML atom creation function. We won’t have to worry about the conventional string representation; that behavior is inherited.

We must override every ancestor constructor. Remember, if we don’t override one, it can still be called; but the ancestor constructor won’t know what to do with the Atom property, leaving it uninitialized. Here is the code for the overriding constructors:

Constructor tAString.Init (aMaxLength: Word);

	Begin

	Atom := 0;

	Inherited Init (aMaxLength);

	CaseSensitive := False;

	End;

Constructor tAString.InitTextC (C: pChar);

	Begin

	Atom := 0;

	Inherited InitTextC (C);

	CaseSensitive := False;

	End;

Constructor tAString.InitTextP (const P: String);

	Begin

	Atom := 0;

	Inherited InitTextP (P);

	CaseSensitive := False;

	End;

Constructor tAString.InitText (const O: tOString);

	Begin

	Atom := 0;

	Inherited InitText (O);

	CaseSensitive := False;

	End;

In each case, the Atom property is set to zero and the inherited constructor is invoked. CaseSensitive is also set to False, because when atoms are stored and compared it is in a case-insensitive manner.

But if Atom is set to zero, how does it ever get set to anything else? Simple: we override SetText_, the underlying method that is responsible for actually storing the text:

Procedure tAString.SetText_

		(aText: pChar; aLength: Word);

	Begin

	Inherited SetText_ (aText, aLength);

	Atom := DdeCreateStringHandle

		(MyDde^.Instance, CString, cp_WinAnsi);

	End;

After invoking the ancestor method, the overriding SetText_ obtains the atom value by calling DdeCreateStringHandle. Here’s our first reference to the Instance property of MyDde. The cp_WinAnsi property simply specifies that the default language should be used—DDEML includes a hook for future automatic language translation of DDE strings.

We need to allow a tAString object to be set to an atom—for example, one that’s arrived in a DDE message. The SetTextA method performs this function:

Procedure tAString.SetTextA (anAtom: hSz);

	Begin

	SetMaxLength

		(DdeQueryString

			(

			MyDde^.Instance,

			anAtom,

			Nil, 0, cp_WinAnsi)

);

	Length := DdeQueryString

		(

		MyDde^.Instance,

		anAtom,

		CString,

		GetMaxLength + 1,

		cp_WinAnsi

);

	Atom := anAtom;

	RetainOwnership;

	End;

Note that we do not invoke SetText_, which would try to create another atom. Instead, we allocate the required space (as reported by DdeQueryString if Nil is the third parameter) and copy the string into CString in another call to the same function.

Each time a string is added to the atom table, the associated atom’s reference count is incremented. When the string is removed, the refer-ence count is decremented. Since the SetTextA method creates a copy of an atom, the object must increment that reference count. The call to RetainOwnership accomplishes this. RetainOwnership is a one-line method:

Procedure tAString.RetainOwnership;

	Begin

	DdeKeepStringHandle (MyDde^.Instance, Atom);

	End;

Since we’ve guaranteed that a tAString object will always own the atom it contains, the Done method can safely free it (and, indeed, must do so):

Destructor tAString.Done;

	Begin

	DdeFreeStringHandle (MyDde^.Instance, Atom);

	Inherited Done;

	End;

Like so many other functions in the Windows API, atom management functions must be invoked in pairs. For every atom produced by DdeCreateStringHandle, there must be a call to DdeFreeStringHandle to get rid of it. The creator of an atom is automatically that atom’s owner, and should therefore be the one to destroy it when the time comes.

But remember: Two identical strings produce the same atom. You may then deduce that the atom manager only stores each unique string once. Subsequent attempts to create an identical string simply increment the reference count and return the same atom. Each use of DdeFreeStringHandle decrements the reference count for that atom; only when the count reaches zero is the string itself actually removed from the table.

DdeKeepStringHandle increments the reference count of an existing atom, so it’s perfect for use here, where we are taking an existing atom but will eventually want to “destroy” it, even though we didn’t create it. Without DdeKeepStringHandle, we would have to maintain a flag property that would tell us whether to free a string during object destruction.

Given SetTextA, it is consistent with the design of the ancestor class that we also have a shortcut constructor:

Constructor tAString.InitTextA (A: hSz);

	Begin

	Atom := 0;

	Inherited Init (0);

	CaseSensitive := False;

	SetTextA (A);

	End;

Just as we need to free the atom if the object is disposed of, we need to free it if the Clear method is invoked:

Procedure tAString.Clear;

	Begin

	Inherited Clear;

	If Atom <> 0 then

		Begin

		DdeFreeStringHandle (MyDde^.Instance, Atom);

		Atom := 0;

		End;

	End;

We also need a method that compares two atoms:

Function tAString.MatchesA (anAtom: hSz): Boolean;

	Begin

	MatchesA :=

		(DdeCmpStringHandles (Atom, anAtom) = 0);

	End;

DdeCmpStringHandles performs an efficient comparison of two atoms, taking into account that they may have come from different applications with different DDE instances. The atoms returned by DdeCreateStringHandle are 32 bits long, but only 16 bits of that truly comprise the atom. The other 16 bits are used by DDEML to keep track of which atoms belong to which instance (as returned by DdeInitialize). DdeCmpStringHandles knows which 16 bits to compare, so the comparison is extremely efficient.

Finally, we need a method that will return the atom and increment its reference count, because many DDEML functions that accept atoms as parameters also take over ownership of those atoms and will, eventually, call DdeFreeStringHandle for them. To keep up the Init/Done pattern for tAStrings, we intend to retain ownership:

Function tAString.GetAtom: hSz;

	Begin

	RetainOwnership;

	GetAtom := Atom;

	End;

Given the tAString class, string handle management in DDEML is a solved problem, and we can get on to more interesting things—like services, items, and topics.

Organizing Services, Topics, and Items�tc "Organizing Services, Topics, and Items"�

Like the Section, Key, and Value hierarchy of the .INI file, DDE conversations deal with data on a three-tiered basis. Here we’ll organize those tiers in three object classes.

A DDE server may provide one or more services, each consisting of at least one topic. But most servers provide several topics. And, at the bottom of the hierarchy, each topic provides access to one or more data items.

Because each of the tService, tTopic, and tItem classes refers to the others, all three classes must be defined in a single Type statement, with the pointer types defined first:

Type

	pService = ^tService;

	pTopic = ^tTopic;

	pItem = ^tItem;

	tService = Object (tObject)

		Name: tAString;

		Topics: tCollection;

		Constructor Init (const aName: tOString);

		Destructor Done; Virtual;

		Function AddTopic

			(const aTopic: tOString): pTopic;

		Function AddTopicP

			(const aTopic: String): pTopic;

		Function AddTopicR (aTopic: Word): pTopic;

		Function FindTopic

			(const aTopicAtom: hSz): pTopic;

		End;

	tTopic = Object (tObject)

		Name: tAString;

		Service: pService;

		Items: tCollection;

		Constructor Init

			(

			const aName: tOString;

			const aService: pService

);

		Destructor Done; Virtual;

		Function FindItem

			(const anItemAtom: hSz): pItem;

		End;

	tItem = Object (tObject)

		Name: tAString;

		Topic: pTopic;

		Constructor Init

			(

			const aName: tOString;

			const aTopic: pTopic

);

		Destructor Done; Virtual;

		Function Poke

			(

			Format: Word;

			Data: Pointer;

			Length: LongInt

): Boolean; Virtual;

		Function Request

			(

			Format: Word;

			var Buffer: Pointer;

			var BufferLength: LongInt

): Boolean; Virtual;

		End;

A tService is at the top of the hierarchy. Most servers provide just one service, which is generally given the name of the application—either its commercial name (for instance, Word Counter) or its program name (WordCnt). Its constructor requires no more information than the service’s name, which it registers with DDEML:

Constructor tService.Init (const aName: tOString);

	Begin

	Inherited Init;

	Name.InitText (aName);

	DdeNameService (MyDde^.Instance,

		Name.GetAtom, 0, dns_Register);

	Topics.Init (5, 5);

	End;

Likewise, it must unregister the service when it is destroyed:

Destructor tService.Done;

	Begin

	DdeNameService (MyDde^.Instance,

		Name.GetAtom, 0, dns_Unregister);

	Name.Done;

	Topics.Done;

	Inherited Done;

	End;

Although you can use the DdeNameService function to unregister all services at once (by passing a Nil pointer as the second parameter), by making this call once per tService object we maintain the control and parallelism that good object-oriented design prefers.

A service can be thought of as a collection of topics. The tService class provides three methods for adding topics to the collection. The difference between the three is simply the format in which each accepts the topic name: tOString, Pascal string, or an ID referencing a string in the application’s resource pool:

Function tService.AddTopic

		(const aTopic: tOString): pTopic;

	Var

		Topic: pTopic;

	Begin

	Topic := New (pTopic, Init (aTopic, @Self));

	Topics.Insert (Topic);

	AddTopic := Topic;

	End;

Function tService.AddTopicP

		(const aTopic: String): pTopic;

	Var

		T: tOString;

	Begin

	T.InitTextP (aTopic);

	AddTopicP := AddTopic (T);

	T.Done;

	End;

Function tService.AddTopicR (aTopic: Word): pTopic;

	Var

		T: tOString;

	Begin

	T.InitTextR (aTopic);

	AddTopicR := AddTopic (T);

	T.Done;

	End;

The methods insert the new tTopic object into the Topics collection, but they also return a pointer to it. The pointer can be used to add items to the topic, the last level of the hierarchy.

A tService object is often required to locate one of the topics in its collection. DDEML refers to topics by their associated atom, so that’s the key FindTopic uses to locate them:

Function tService.FindTopic

		(const aTopicAtom: hSz): pTopic;

	Function Matches (Topic: pTopic): Boolean; Far;

		Begin

		Matches := Topic^.Name.MatchesA (aTopicAtom);

		End;

	Begin

	FindTopic := Topics.FirstThat (@Matches);

	End;

The implementation of topics is simpler than that of services. The constructor and destructor do not have to register any names:

Constructor tTopic.Init

		(

		const aName: tOString;

		const aService: pService

);

	Begin

	Inherited Init;

	Name.InitText (aName);

	Service := aService;

	Items.Init (10, 10);

	End;

Destructor tTopic.Done;

	Begin

	Name.Done;

	Items.Done;

	Inherited Done;

	End;

A pointer is maintained to provide a link back to the parent Service.

Because tItem is an abstract class—you will always write derivative classes to represent actual data items—there are no AddItem methods. There is a method for finding an item, given an atom of its name:

Function tTopic.FindItem

		(const anItemAtom: hSz): pItem;

	Function Matches (Item: pItem): Boolean; Far;

		Begin

		Matches := Item^.Name.MatchesA (anItemAtom);

		End;

	Begin

	FindItem := Items.FirstThat (@Matches);

	End;

When you actually construct a DDE server, you’ll derive a class from tItem for each item to which you want to provide access. For example, the abstract constructor requires a name for the item:

Constructor tItem.Init

		(const aName: tOString; const aTopic: pTopic);

	Begin

	Inherited Init;

	Name.InitText (aName);

	Topic := aTopic;

	End;

The derived classes you create should include the name in the constructor, so it’s not passed as a parameter.

The Done method is minimal:

Destructor tItem.Done;

	Begin

	Name.Done;

	Inherited Done;

	End;

Two other defined methods are Poke and Request. These are abstract methods:

Function tItem.Request

		(

		Format: Word;

		var Buffer: Pointer;

		var BufferLength: LongInt

): Boolean;

	Begin

	Request := False;

	End;

Function tItem.Poke

		(

		Format: Word;

		Data: Pointer;

		Length: LongInt

): Boolean;

	Begin

	Poke := False;

	End;

We’ll override these methods later in this chapter, when we build an actual DDE server.

Making Conversation�tc "Making Conversation"�

All DDE transactions occur within the context of a conversation. The tConversation class encapsulates the details.

When DDEML connects our application to some other via DDE, a conversation is begun; it will continue until a disconnect. Every conversation is held on a specific service and topic; within a single conversation all the items that topic supports may be accessed.

Since every transaction that arrives is in reference to a conversation, and since both servers and clients are permitted to hold more than one conversation at once, it is essential that we maintain a list of active conversations. The definition of an individual conversation is as �follows:

Type

	pConversation = ^tConversation;

	tConversation = Object (tObject)

		ConvID: hConv;

		Topic: pTopic;

		Active: Boolean;

		Timeout: Word;

		Constructor Init

			(aConvID: hConv; aTopic: pTopic);

		Destructor Done; Virtual;

		Procedure Disconnect; Virtual;

		End;

The ConvID property contains the identifier DDEML assigns to the conversation. The Topic pointer provides access to the specific topic on which the conversation is being held. Although the conversation, when initiated, specifies both topic and service, there will be no further reference to the service, so we don’t have to save that. The Timeout property contains the number of seconds a DDE transaction is permitted to drag on before timing out. It is used by client applications only. You’ll see the reason for the Active flag shortly.

The constructor simply initializes the properties:

Constructor tConversation.Init

		(

		aConvID: hConv;

		aTopic: pTopic

);

	Begin

	Inherited Init;

	ConvID := aConvID;

	Topic := aTopic;

	Active := True;

	Timeout := 30;

	End;

The destructor may have to terminate the conversation. (I say “may” because a conversation can be terminated at any time, by either the client or the server.) Now you know why we have the Active flag. If the conversation is being destroyed because the other party disconnected, Active will have been set to False; otherwise it will still be True and the conversation must terminate itself:

Destructor tConversation.Done;

	Begin

	If Active then

		Disconnect;

	Inherited Done;

	End;

The Disconnect method invokes the DDEML DdeDisconnect function to do the job:

Procedure tConversation.Disconnect;

	Begin

	Active := False;

	DdeDisconnect (ConvID);

	End;

Creating a DDE Server�tc "Creating a DDE Server"�

Although we’ll certainly have to expand on the framework we’ve laid out, we are ready to create a simple DDE server application. This begins by fleshing out tDde with collections of services and conversations. Then we’ll be ready to open our first DDE conversation.

Creating the tDde Class�tc "Creating the tDde Class"�

tDde provides the framework on which the various aspects of DDEML implementation—including services, topics, items, and conversations—are hung.

We’ve had a minimal tDde definition present in the DDE unit since it started, simply to permit clean syntax-checking compiles. Now we can flesh it out:

Type

	pDde = ^tDde;

	tDde = Object (tObject)

		Instance: LongInt;

		Services: tCollection;

		Conversations: tCollection;

		Constructor Init (aParent: pWindowsObject);

		Destructor Done; Virtual;

		Function AddService

			(const aService: tOString): pService;

		Function AddServiceP

			(const aService: String): pService;

		Function AddServiceR

			(aService: Word): pService;

		Function FindTopic

			(

			const aServiceAtom, aTopicAtom: hSz

): pTopic;

		Function FindConversation

			(

			const aConvID: hConv

): pConversation;

		Function WildConnect

			(

			const aService, aTopic: hSz;

			const Context: tConvContext

): hDdeData; Virtual;

		Function CanConnect

			(

			const aService, aTopic: hSz;

			const Context: tConvContext

): Boolean; Virtual;

		Procedure Connecting

			(const Conversation: pConversation); Virtual;

		Procedure Disconnecting

			(const Conversation: pConversation); Virtual;

		Private

		Procedure Connecting_

			(

			const aConvID: hConv;

			const aService, aTopic: hSz

);

		End;

For all the methods this definition introduces, we’ll add still more later. These are the fewest methods we’ll need to build a DDE server application.

The Instance property has been there all along; that’s the parameter most of the DDEML functions require. It identifies this particular use of DDEML from all others. Normally, other uses of DDEML will come from other DDEML applications running at the same time as yours. Although it’s possible to have more than one instance in a single application, there are certain problems that arise from doing this, and there are no real benefits. There should not be more than one object instance of tDde.

Nine times out of ten, the Services collection will possess just one element. It will support as many as you need to place, however.

Before we can look at the Init constructor, we must inspect the DDEML callback function. This function is invoked by DDEML whenever a DDE transaction arrives. Because we allow only one instance of tDde and keep its address in MyDde (the address will be assigned in the Init constructor), we can build a callback function that acts as a transaction switch and invokes appropriate handlers in tDde, much as message handlers in tDlgAppWindow process messages dispatched by ObjectWindows.

Be certain that you’ve checked Smart Callbacks on the Options..Compiler... dialog box. This generates extra code that obviates the need for calls to the Windows API functions MakeProcInstance and FreeProcInstance. These functions add the extra code indirectly at runtime; Smart Callbacks adds it at compile time.

Error in BPW’s Smart Callbacks Online Help

The BPW online help documentation states incorrectly that, if the Smart Callbacks checkbox is checked, MakeProcInstance will be required. This is contrary to the printed documentation. Use Smart Callbacks to avoid having to call MakeProcInstance.

The callback function looks like this:

Function MyDdeProc

		(

		ConvType: Word;

		Format: Word;

		ConvID: hConv;

		hSz1, hSz2: hSz;

		Data: hDdeData;

		Data1, Data2: LongInt

): hDdeData; Export;

	Begin

	MyDdeProc := 0;

	Case ConvType of

		xtyp_WildConnect:

			MyDdeProc := MyDde^.WildConnect

				(hSz2, hSz1, pConvContext (Data1)^);

		xtyp_Connect:

			MyDdeProc :=

				hDdeData

					(MyDde^.CanConnect

						(

						hSz2,

						hSz1,

						pConvContext (Data1)^

));

		xtyp_Connect_Confirm:

			MyDde^.Connecting_ (ConvID, hSz2, hSz1);

		xtyp_Disconnect:

			MyDde^.Disconnecting

				(FindConversation (aConvID));

		End;

	End;

As you can see, MyDdeProc wastes no time getting the transactions back into the MyDde object. For example, the xtyp_WildConnect transaction results in control being passed to MyDde^.WildConnect.

xtyp_Connect_Confirm is immediately turned over to a Connected method. Because the callback function handles so many different types of transactions, its parameter names are deliberately vague. Each has a different meaning, depending on the transaction, so our callback function simply recognizes the transaction, assembles the proper parameters for the transaction handling method, and invokes the method.

The callback function appears in the code ahead of the constructor for tDde because the constructor must pass the address of the function to the DDEML:

Constructor tDde.Init;

	Begin

	Inherited Init;

	MyDde := @Self;

	Instance := 0;

	DdeInitialize (Instance,

		MyDdeProc, APPCMD_FILTERINITS, 0);

	Services.Init (1, 1);

	Conversations.Init (5, 5);

	End;

Instance must be set to zero before passing it to DdeInitialize. After the call, it contains the value that will be passed to the other DDEML functions. The APPCMD_FILTERINITS flag is actually just stating the default: On the first call to DdeInitialize this flag is assumed. It tells DDEML not to send any conversation requests to MyDdeProc until after at least one service has been specified. After all, at this point DDEML can’t tell whether this application intends to be a server, a client, or both. It won’t be until a tService object is created that DdeNameService will be invoked, announcing that the application is a server (although it can still become a client as well).

The Services collection starts out with space allocated for one service, the usual amount; it can grow as needed. Conversations starts out with space for five conversations. Note, however, that neither services nor conversations are actually added to these collections by the constructor. The owning application should add services as needed, and conversations are added by the Connecting_ method, which we’ll see shortly.

Although the constructor does not add services or conversations, the destructor will dispose of any that have been added:

Destructor tDde.Done;

	Begin

	Conversations.Done;

	Services.Done;

	DdeUninitialize (Instance);

	MyDde := Nil;

	Inherited Done;

	End;

It’s important that the statements in the destructor be executed in the order given. If there are any active conversations, they will be terminated as the collection frees each element. Likewise, any services that were registered will be unregistered when the tService object is freed. At that point, and no sooner, is it safe for DDEML to be uninitialized.

Earlier, we saw the AddTopic methods of the tService class, which includes a collection of topics. tDde includes a collection of services, and needs parallel methods:

Function tDde.AddService

		(const aService: tOString): pService;

	Var

		Service: pService;

	Begin

	Service := New (pService, Init (aService));

	Services.Insert (Service);

	AddService := Service;

	End;

Function tDde.AddServiceP

		(const aService: String): pService;

	Var

		T: tOString;

	Begin

	T.InitTextP (aService);

	AddServiceP := AddService (T);

	T.Done;

	End;

Function tDde.AddServiceR (aService: Word): pService;

	Var

		T: tOString;

	Begin

	T.InitTextR (aService);

	AddServiceR := AddService (T);

	T.Done;

	End;

When an xtyp_Connect transaction arrives at the callback function, it specifies both service and topic. tDde has a FindTopic method of its own that includes the service name in its search:

Function tDde.FindTopic

		(const aServiceAtom, aTopicAtom: hSz): pTopic;

	Function Matches (Service: pService): Boolean; Far;

		Begin

		Matches :=

			Service^.Name.MatchesA (aServiceAtom);

		End;

	Var

		Service: pService;

	Begin

	FindTopic := Nil;

	Service := Services.FirstThat (@Matches);

	If Assigned (Service) then

		FindTopic := Service^.FindTopic (aTopicAtom);

	End;

If a matching Service is found, its FindTopic method is invoked to finish the job.

We also need a FindConversation method that will locate a specific conversation, given a DDEML conversation ID:

Function tDde.FindConversation

		(const aConvID: hConv): pConversation;

	Function Matches

			(Conversation: pConversation): Boolean; Far;

		Begin

		Matches := (Conversation^.ConvID = aConvID);

		End;

	Var

		Conversation: pConversation;

	Begin

	FindConversation :=

		Conversations.FirstThat (@Matches);

	End;

When an xtyp_WildConnect transaction arrives, it means that some would-be client application has sent out a general request to initiate a conversation—any service, any topic. In response to this transaction, the callback function is supposed to return zero if it refuses to participate, or a data handle pointing to a set of atoms representing all available services and topics. The WildConnect method does this:

Function tDde.WildConnect

		(

		const aService, aTopic: hSz;

		const Context: tConvContext

): hDdeData;

	Const

		MaxPairs = 64;

	Var

		Pairs: Array [1..MaxPairs] of tHSzPair;

		Count: Word;

	Procedure EnumService (aService: pService); Far;

		Procedure EnumTopic (aTopic: pTopic); Far;

			Begin

			Inc (Count);

			Pairs[Count].hszSvc :=

				aService^.Name.GetAtom;

			Pairs[Count].hszTopic :=

				aTopic^.Name.GetAtom;

			End;

		Begin

		aService^.Topics.ForEach (@EnumTopic);

		End;

	Begin

	Count := 0;

	Services.ForEach (@EnumService);

	Inc (Count);

	Pairs[Count].hszSvc := 0;

	Pairs[Count].hszTopic := 0;

	WildConnect := DdeCreateDataHandle (Instance,

		@Pairs[1], Sizeof (tHSzPair) * Count,

		0, 0, cf_Text, 0);

	End;

This method is interesting for its doubly nested enumeration functions. At the outer level, Services is enumerated; for each Service, its Topics are enumerated.

The DdeCreateDataHandle function is a lot more friendly than its underlying GlobalAlloc functions. It not only allocates the memory block, it copies the data into it and returns the 32-bit handle. The atoms we are returning must go in pairs as defined by the tHSzPair type from the DDEML unit. The final pair must be set to zero.

The xtyp_Connect transaction, in spite of its name, does not actually start a conversation. It asks if a conversation can be started on a given service/topic. The callback function is supposed to return True or False to indicate whether the server is willing; so this transaction is directed to the Boolean method CanConnect:

Function tDde.CanConnect

		(

		const aService, aTopic: hSz;

		const Context: tConvContext

): Boolean;

	Begin

	CanConnect :=

		(FindTopic (aService, aTopic) <> Nil);

	End;

The method will return True if a matching Service with Topic can be found. Remember, this method can be overridden if your application needs to be more picky about the applications with which it consorts.

The xtyp_Connect_Confirm transaction arrives to announce the conversation has actually started. It is at this point we’ll want to create a tConversation object to represent it. The private Connecting_ method creates the conversation, then invokes the public Connecting method in case the application needs to do any more processing:

Procedure tDde.Connecting_

		(

		const aConvID: hConv;

		const aService, aTopic: hSz

);

	Var

		Topic: pTopic;

		Conversation: pConversation;

	Begin

	Topic := FindTopic (aService, aTopic);

	Conversation :=

		New (pConversation, Init (aConvID, Topic));

	Conversations.Insert (Conversation);

	Connecting (Conversation);

	End;

Procedure tDde.Connecting

		(const Conversation: pConversation);

	Begin

	End;

The default Connecting method doesn’t do anything; but you can always derive a new class from tDde and include your own Connecting method if you want.

The Disconnecting method, which is invoked by the callback procedure when a xtyp_Disconnect transaction arrives, could also be augmented by a descendent method, but it must be invoked, as well:

Procedure tDde.Disconnecting

		(const Conversation: pConversation);

	Begin

	If Assigned (Conversation) then

		Begin

		Conversation^.Active := False;

		Conversations.Free (Conversation);

		End;

	End;

Receipt of xtyp_Disconnect means the other party wishes to terminate. Our tConversation object should not disconnect because that’s already been started at the other end. That’s why we set Conversation^.Active to False before freeing the object. If Active were left True, Conversation would attempt to disconnect as it was being destroyed, and we might get caught in a loop.

Transforming Word Counter into a DDE Server�tc "Transforming Word Counter into a DDE Server"�

At this time, the tDde class is complete enough to allow an application with a tDde object to connect and disconnect a conversation with a client application. Word Counter, written in the last chapter, will serve as our test bed.

If you are keeping the code for each chapter separate, make a copy of WORDCNT.PAS in the subdirectory for this chapter and load it into the BPW IDE; add DDE to the list of units in the Uses clause:

Uses

	Objects,

	OWindows,

	WinProcs,

	WinTypes,

	DlgApp,

	Controls,

	Clpboard,

	OString,

	Strings,

	Dde;

Although tDde is adequate for opening and closing conversations, we’ll be deriving a class from tDde unique to Word Counter. Let’s prepare for that by deriving a minimal descendent now:

Type

	pMyDde = ^tMyDde;

	tMyDde = Object (tDde)

		End;

Type

	pMainDlg = ^tMainDlg;

	tMainDlg = Object (tDlgAppWindow)

		Display: tXStatic;

		Count: LongInt;

		CountText: tOString;

		MyDde: tMyDde;

			

			

		End;

We’ll have to add MyDde to the list of properties tMainDlg initializes and destroys. Unlike most properties, though, initialization of tDde takes more than one line because, in addition to initializing the object itself, we have to add topics and services. To keep things neat, I do the tDde initializing in a nested procedure:

Constructor tMainDlg.Init;

	Procedure InitDde;

		Var

			Service: pService;

			Topic: pTopic;

		Begin

		MyDde.Init;

		Service := MyDde.AddServiceC ('Word Counter');

		Topic := Service^.AddTopicC ('Counter');

		End;

	Begin

	Inherited Init;

	Clipboard.Insert (New (pClipText, Init));

	Display.InitResource (@Self, id_Display, 16);

	CountText.Init (8);

	CountText.SetTextN (0);

	InitDde;

	End;

In InitDde, after invoking MyDde’s constructor, we create a tService object and add it to MyDde’s Services collection. We then create a topic and add it to Service’s Topics collection. Later in this chapter, we’ll add items to the topic; but for now, compile and run Word Counter.

You should see no difference in the way Word Counter runs. But if you start a DDE client application which can make a wildcard connection, you’ll see “Word Counter|Counter” in the connection list. That means Word Counter connected successfully. You should then be able to close either the client application or Word Counter; the conversation should end without grief for the surviving application. Alternatively, many applications have a programmable DDE feature that allows you to connect directly to any server. For example, the following Word for Windows macro will connect to, and then disconnect from, Word Counter:

Sub MAIN

C = DDEInitiate("Word Counter", "Counter")

DDETerminate C

End Sub

Using DDE to Share Data�tc "Using DDE to Share Data"�

In DDE, a Request transaction is sent when a client wants the server to send data. A Poke transaction is used by the client to send data to the server. In this section, we’ll implement both.

Earlier in this chapter, we gave the tItem class an abstract Poke method, but never invoked it from anywhere. We’ll rectify that by enhancing the MyDdeProc function with a nested function, also called Poke:

Function MyDdeProc

		(

		ConvType: Word;

		Format: Word;

		ConvID: hConv;

		hSz1, hSz2: hSz;

		Data: hDdeData;

		Data1, Data2: LongInt

): hDdeData; Export;

	Function Poke: LongInt;

		Var

			Conversation: pConversation;

			Item: pItem;

			P: Pointer;

			Length: LongInt;

		Begin

		Poke := dde_fNotProcessed;

		Conversation :=

			MyDde^.FindConversation (ConvID);

		Item := Conversation^.Topic^.FindItem (hSz2);

		If Assigned (Item) then

			Begin

			P := DdeAccessData (Data, @Length);

			If Item^.Poke (Format, P, Length) then

				Poke := dde_fAck;

			DdeUnaccessData (Data);

			End;

		End;

	Begin

	MyDdeProc := 0;

	Case ConvType of

			

			

		xtyp_Poke:

			MyDdeProc := Poke;

		End;

	End;

In this nested function, we identify the active conversation and locate the item to be poked. DdeAccessData is analogous to GlobalLock, on which it is based. It returns a pointer to the data, which we can pass directly to Item^.Poke, along with the number of bytes the data occupies.

tItem is an abstract class; an application has to derive useful classes from it. For example, in Word Counter, we can define a tTextItem class:

Type

	pTextItem = ^tTextItem;

	tTextItem = Object (tItem)

		Function Poke

			(

			Format: Word;

			Data: Pointer;

			Length: LongInt

): Boolean; Virtual;

		End;

The ancestor Poke simply returns False, which causes the poke operation to fail. The derived Poke actually does something with the data being poked, and returns True to so indicate:

Function tTextItem.Poke

		(

		Format: Word;

		Data: Pointer;

		Length: LongInt

): Boolean;

	Var

		Parent: pMainDlg;

	Begin

	Poke := False;

	If Format = cf_Text then

		Begin

		Parent := pMainDlg (Application^.MainWindow);

		Parent^.WaitCursor.Start;

		Parent^.DataFile.Title.SetTextR (str_DDE);

		Parent^.SetCaption;

		Parent^.CountWords (pChar (Data));

		Parent^.WaitCursor.Complete;

		Poke := True;

		End;

	End;

Note that this is almost identical to the cmEditPaste method; that’s because the job it’s doing is very similar. One difference is that Poke must verify that the supplied format is acceptable. DDE uses the same format flags as the Clipboard, so a simple check of the format against cf_Text is all that is required. In both methods, data stored in memory must be sent to the CountWords method. Of course, cmEditPaste altered the caption so that it announced the words being counted were from “<Clipboard>”; we must add a constant, str_DDE:

Const

			

			

	str_DDE = 7;

and another string to the stringtable:

STRINGTABLE LOADONCALL MOVEABLE DISCARDABLE

BEGIN

		

		

	7, "<DDE>"

END

Finally, we must add the new item to the Counter topic when we initialize the application’s tDde object:

	Procedure InitDde;

	Var

		Service: pService;

		Topic: pTopic;

	Begin

	MyDde.Init;

	Service := MyDde.AddServiceC ('Word Counter');

	Topic := Service^.AddTopicC ('Counter');

	Topic^.Items.Insert

		(New (pTextItem, Init (Topic)));

	End;

Now a slightly expanded Word for Windows macro will test Word Counter’s DDE Poke function:

Sub MAIN

C = DDEInitiate("Word Counter", "Counter")

DDEPoke C, "Text", "Hello DDE world!"

DDETerminate C

End Sub

Running this macro will cause Word Counter’s caption to change to “Word Counter - <DDE>” and the displayed count to run up to 3.

Of course, that won’t be much use unless the application that sent the text to be counted can get the count back. When the client requests data, the server’s callback function receives an xtyp_Request transaction. Again, we’ll add a nested function to process this transaction:

Function MyDdeProc

		(

		ConvType: Word;

		Format: Word;

		ConvID: hConv;

		hSz1, hSz2: hSz;

		Data: hDdeData;

		Data1, Data2: LongInt

): hDdeData; Export;

			

			

	Function Request: hDdeData;

		Var

			Conversation: pConversation;

			Item: pItem;

			Original: Pointer;

			OriginalLength: LongInt;

		Begin

		Request := 0;

		Conversation :=

			MyDde^.FindConversation (ConvID);

		Item := Conversation^.Topic^.FindItem (hSz2);

		If Assigned (Item) then

			If Item^.Request (Format,

					Original, OriginalLength) then

				Request := DdeCreateDataHandle

					(

					MyDde^.Instance,

					Original, OriginalLength,

					0, Item^.Name.GetAtom, Format, 0

);

		End;

	Begin

	MyDdeProc := 0;

	Case ConvType of

			

			

		xtyp_Request:

			MyDdeProc := Request;

		End;

	End;

The abstract tItem.Request always returns False. We’ll have to override that behavior in a new class unique to Word Counter, tCountItem:

Type

	pCountItem = ^tCountItem;

	tCountItem = Object (tItem)

		Function Request

			(

			Format: Word;

			var Buffer: Pointer;

			var BufferLength: LongInt

): Boolean; Virtual;

		End;

Just as tTextItem only overrides its Poke method, tCountItem only overrides its Request method. With no other effort, attempts to read the Text item or to poke the Count item will fail.

The Request method itself is, as you might expect, similar to the tClipText.Render method. Even the calling sequence is similar:

Function tCountItem.Request

		(

		Format: Word;

		var Buffer: Pointer;

		var BufferLength: LongInt

): Boolean;

	Var

		Parent: pMainDlg;

	Begin

	If Format = cf_Text then

		Begin

		Parent := pMainDlg (Application^.MainWindow);

		Buffer := Parent^.CountText.CString;

		BufferLength := Parent^.CountText.Length + 1;

		Request := True;

		End

	else

		Request := False;

	End;

As with Poke, DDEML indicates the format in which the data is required. Some clients will ask for data, starting with a preferred format but continuing with less-desired formats, until the request is satisfied or the client runs out of supported formats.

Other than that, however, the code is quite similar to Render’s.

Once an object of the tCountItem class has been created and given to the Counter topic, Word Counter is ready to run:

Procedure InitDde;

	Var

		Service: pService;

		Topic: pTopic;

	Begin

	MyDde.Init;

	Service := MyDde.AddServiceC ('Word Counter');

	Topic := Service^.AddTopicC ('Counter');

	Topic^.Items.Insert

		(New (pTextItem, Init (Topic)));

	Topic^.Items.Insert

		(New (pCountItem, Init (Topic)));

	End;

We can add to the Word for Windows macro to retrieve the count. The Print statement displays the value on Word for Windows’ status bar:

Sub MAIN

C = DDEInitiate("Word Counter", "Counter")

DDEPoke C, "Text", "Hello DDE world"

CT$ = DDERequest$(C, "Count")

DDETerminate C

Print CT$

End Sub

By replacing “Hello DDE world” with the WordBasic Selection$() function and adding code to start Word Counter if it isn’t already running, we can actually make this a useful macro:

Declare Function IsAppLoaded Lib "Kernel"(name$) As Integer Alias

"GetModuleHandle"

Declare Function GetActiveWindow Lib "User" As Integer

Declare Sub SetActiveWindow Lib "User"(hWnd As Integer)

Sub MAIN

If IsAppLoaded("WordCnt.EXE") = 0 Then

	MyWindow = GetActiveWindow

	Shell "E:\Apps\WordCnt.EXE"

	SetActiveWindow(MyWindow)

End If

C = DDEInitiate("Word Counter", "Counter")

DDEPoke C, "Text", Selection$()

CT$ = DDERequest$(C, "Count")

DDETerminate C

Print CT$

End Sub

The above macro, which you can name CountWords, sends any selected block of text from a Word for Windows document to Word Counter, retrieves the count, then displays it.

Creating an Automatic System Topic�tc "Creating an Automatic System Topic"�

In our design of a DDEML server, we have been remiss in one sense from proper server design. DDE protocol strongly suggests that servers supply a System topic containing specific items.

In the original DDE specification, each server application was to supply a “System” topic that would contain at least two items: “Topics” and “SysItems.” The first of these was to contain a tab-delimited list of available topics; the second was to contain a tab-delimited list of available items in the “System” topic.

Since then, the suggestions for “System” items have grown, but few if any applications support the whole list. The DDEML unit supplies string constants for them, reducing the chance that a spelling error on your part might prevent your application from communicating fully with a DDE client.

The Seven “System” Topic Items

The DDEML unit has predefined several strings for use as item names under the “System” topic. (It also includes a string constant for “System”: szddesys_Topic.) Here is a list of the seven constants, their values, and their purposes:

•	szddesys_Item_Topics = 'Topics'

	This item should contain a list of available topics, including “System.” The topic names should be delimited by the tab �character (#9). This list may change from moment to moment, depending on how dynamic the application is.

•	szddesys_Item_SysItems = 'SysItems'

	This item contains a list of items available in the “System” topic, including “SysItems,” separated by tabs.

•	szddesys_Item_RtnMsg = 'ReturnMessage'

	This item supplies information about the most recent DDE ACK message sent. DDEML applications don’t usually work at this low a level, so they don’t usually support this item.

•	szddesys_Item_Status = 'Status'

	This item returns “Ready” or “Busy.” A client can request this item to determine if now is a good time to make a more complex request.

•	szddesys_Item_Formats = 'Formats'

	This item returns a tab-delimited list of supported Clipboard formats. The format names omit the “cf_” prefix; at a minimum the one format always supported is “Text”—because that’s the format used by the “System” topic. It is understood that not all items will be available in all formats, but it gives a client application a starting point—it needn’t even ask for data in a format your server doesn’t support.

•	szddesys_Item_Help = 'Help'

	This item supplies a brief text on your server’s support of DDE. It is free format; to keep your code language non-specific, I recommend storing the text in the application’s resource pool.

•	szdde_Item_ItemList = 'TopicItemList'

	This item contains a tab-delimited list of items supported by all topics other than “System.”

One other detail that has evolved with DDE is that each service is expected to support a “System” topic.

The tTopic class will seldom be overridden, so adding the “System” topic itself will not be much effort. But each item is always a distinct class; and the “System” items are more work than most because we want their maintenance to be as automatic as possible.

For example, the “Topics” item is supposed to list all available topics. This list can change as the application runs, so merely storing a list will not be adequate. We’ll need a class that can actually build such a list upon demand. Here’s the definition of the tTopicsItem class:

(***)

				Implementation

(***)

Type

	pTopicsItem = ^tTopicsItem;

	tTopicsItem = Object (tItem)

		Topics: tOString;

		Constructor Init (aTopic: pTopic);

		Destructor Done; Virtual;

		Function Request

			(

			Format: Word;

			var Buffer: Pointer;

			var BufferLength: LongInt

): Boolean; Virtual;

		End;

(Note that this definition is within the Implementation section of the unit. This class will only be used internally; there’s no need to publish it.)

Yes, there’s a Topics property that, as a tOString object, looks like there might be a compiled list of topics, after all; but I haven’t changed my mind. Remember that the address placed in the Request method’s Buffer parameter must not be that of a stack variable. By making Topics a property, we can guarantee it will exist long enough to make it through the DDEML system, but still retain more control over its access and lifetime than would be possible with a static variable.

Here are the constructor and destructor:

Constructor tTopicsItem.Init (aTopic: pTopic);

	Var

		aName: tOString;

	Begin

	aName.InitTextP (szddesys_Item_Topics);

	Inherited Init (aName, aTopic);

	aName.Done;

	Topics.Init (0);

	End;

Destructor tTopicsItem.Done;

	Begin

	Topics.Done;

	Inherited Done;

	End;

Note we’ve used the string constant from the DDEML unit to name the item, so we won’t have to worry about our spelling. The Topics property is initialized, but not given any value; that will be done as promised, on demand, when the Request method is invoked:

Function tTopicsItem.Request

		(

		Format: Word;

		var Buffer: Pointer;

		var BufferLength: LongInt

): Boolean;

	Procedure AddToList (Topic: pTopic); Far;

		Begin

		If Topics.Length > 0 then

			Topics.AppendP (#9);

		Topics.Append (Topic^.Name);

		End;

	Begin

	Topics.Clear;

	Topic^.Service^.Topics.ForEach (@AddToList);

	Buffer := Topics.CString;

	BufferLength := Topics.Length + 1;

	Request := True;

	End;

Here we utilize the back-link chain: Our parent, Topic, leads us to its parent, Service, whose Topics collection is enumerated to obtain the list we need. It may sound confusing, but the Pascal statement is clear, elegant, and powerful.

The dynamic nature of the DDE Request should also be evident. Whatever topics your application might add or remove from this service, the list will always be accurate as of the moment it’s requested.

The “SysItems” topic is just a variant of the same theme:

Type

	pSysItemsItem = ^tSysItemsItem;

	tSysItemsItem = Object (tItem)

		Items: tOString;

		Constructor Init (aTopic: pTopic);

		Destructor Done; Virtual;

		Function Request

			(

			Format: Word;

			var Buffer: Pointer;

			var BufferLength: LongInt

): Boolean; Virtual;

		End;

			

			

Constructor tSysItemsItem.Init (aTopic: pTopic);

	Var

		aName: tOString;

	Begin

	aName.InitTextP (szddesys_Item_SysItems);

	Inherited Init (aName, aTopic);

	aName.Done;

	Items.Init (0);

	End;

Destructor tSysItemsItem.Done;

	Begin

	Items.Done;

	Inherited Done;

	End;

Function tSysItemsItem.Request

		(

		Format: Word;

		var Buffer: Pointer;

		var BufferLength: LongInt

): Boolean;

	Procedure AddToList (Item: pItem); Far;

		Begin

		If Items.Length > 0 then

			Items.AppendP (#9);

		Items.Append (Item^.Name);

		End;

	Begin

	Items.Clear;

	Topic^.Items.ForEach (@AddToList);

	Buffer := Items.CString;

	BufferLength := Items.Length + 1;

	Request := True;

	End;

Since these are the most commonly implemented “System” topic items, we’ll stop here. I’m sure you get the idea, and will be able to add more items on your own.

To me, the most exciting aspect of this implementation of the “System” topic is that once it’s in place it’s all automatic. Now the icing on the cake: We can make the topic itself available automatically. After all, each Service is supposed to have a “System” topic, so why not let each tService object add one?

Constructor tService.Init (const aName: tOString);

	Procedure InitSystemTopic;

		Var

			SystemTopic: pTopic;

		Begin

		SystemTopic := AddTopicP (szDDESYS_Topic);

		SystemTopic^.Items.Insert

			(New (pTopicsItem, Init (SystemTopic)));

		SystemTopic^.Items.Insert

			(New (pSysItemsItem, Init (SystemTopic)));

		End;

	Begin

	Inherited Init;

	Name.InitText (aName);

	DdeNameService (MyDde^.Instance,

		Name.GetAtom, 0, dns_Register);

	Topics.Init (5, 5);

	InitSystemTopic;

	End;

The nested InitSystemTopic procedure does the job nicely. Now all you have to do to implement DDE with a “System” topic is add the tDde object.

Building a DDEML Client Application�tc "Building a DDEML Client Application"�

Given the tDde class we’ve already created, we are much closer to building a DDE client application than you might think. After all, clients don’t have to manage services, topics, or items; just conversations. (Granted, they open conversations based on topics, and request and poke items, but they don’t need to maintain lists of potential topics and items.)

The biggest difference between a DDE server and client is that the server reacts to transactions that arrive at the callback function, while clients primarily initiate transactions by invoking DDEML functions.

In this section, we’ll build a simple DDE client to send small amounts of text to Word Counter and obtain a count in return. We’ll also learn how to start applications programmatically and send commands to Program Manager via DDE to add new groups and group items.

Starting Applications Programmatically�tc "Starting Applications Programmatically"�

It’s all well and good to be able to start an application by double-clicking on an icon or filename. But what if one application needs to start another? The ExeFile unit will do the job.

When an application fails to make a DDE connection because the server is not running, it is customary for the client app to attempt to start it by invoking the WinExec API function. But this function can fail; and, if it does, an error message should be displayed...suddenly, like so many programming tasks, the required effort begins to get out of hand.

Still, we can tame this beast with the tExeFile class, defined in the ExeFile unit and accompanied by an EXEFILE.RES resource file with the required error strings.

A tExeFile object is derived from tOString. The tOString ancestor will give us the ability to append and do other string manipulations of the filename for free.

The Interface section of EXEFILE.PAS should look like this:

Unit ExeFile;

	{$R ExeFile.Res}

	(***)

						Interface

	(***)

	Uses

		WinTypes,

		WinProcs,

		Objects,

		OWindows,

		OString,

		ShellAPI;

	Type

		pExeFile = ^tExeFile;

		tExeFile = Object (tOString)

			Instance: tHandle;

			Constructor Init (aMaxLength: Word);

			Constructor InitTextC (C: pChar);

			Constructor InitTextP (const P: String);

			Constructor InitText (const O: tOString);

			Constructor Load (var S: tStream);

			Constructor InitTextR (ID: Word);

			Constructor InitTextW (aWindow: pWindowsObject);

			Procedure Error (Code: Word); Virtual;

			Function Run (Show: Word): Boolean;

			Procedure SetService (const Service: tOString);

			Procedure SetServiceP (const Service: String);

			End;

The Instance property will be filled in by the Run method if the attempt to start the application is successful. Although we don’t need the property for the current project, applications often like to keep track of subsidiary apps they start.

The constructors all invoke their corresponding ancestors, then zero Instance and (except for Load) set the CaseSensitive flag to False:

Constructor tExeFile.Init (aMaxLength: Word);

	Begin

	Inherited Init (aMaxLength);

	Instance := 0;

	CaseSensitive := False;

	End;

Constructor tExeFile.InitTextC (C: pChar);

	Begin

	Inherited InitTextC (C);

	Instance := 0;

	CaseSensitive := False;

	End;

Constructor tExeFile.InitTextP (const P: String);

	Begin

	Inherited InitTextP (P);

	Instance := 0;

	CaseSensitive := False;

	End;

Constructor tExeFile.InitText (const O: tOString);

	Begin

	Inherited InitText (O);

	Instance := 0;

	CaseSensitive := False;

	End;

Constructor tExeFile.Load (var S: tStream);

	Begin

	Inherited Load (S);

	Instance := 0;

	End;

Constructor tExeFile.InitTextR (ID: Word);

	Begin

	Inherited InitTextR (ID);

	Instance := 0;

	CaseSensitive := False;

	End;

Constructor tExeFile.InitTextW

		(aWindow: pWindowsObject);

	Begin

	Inherited InitTextW (aWindow);

	Instance := 0;

	CaseSensitive := False;

	End;

The Error method will be invoked if Run fails:

Procedure tExeFile.Error (Code: Word);

	Var

		Caption,

		Message: tOString;

	Const

		str_Error = 10099;

		str_First = 10100;

	Begin

	Caption.InitTextR (str_Error);

	Message.InitTextR (str_First + Code);

	MessageBeep (mb_IconHand);

	MessageBox (Application^.MainWindow^.hWindow,

		Message.CString,

		Caption.CString,

		mb_IconHand);

	End;

The two constants refer to the stringtable IDs of the error messages. Code will be a value between 0 and 31. (Unlike many error code schemes, the WinExec error 0 indicates that something went wrong.)

The Run method is quite simple, since WinExec does most of the work:

Function tExeFile.Run (Show: Word): Boolean;

	Var

		Status: Word;

	Begin

	Instance := 0;

	Status := WinExec (CString, Show);

	If Status < 32 then

		Error (Status)

	else

		Instance := Status;

	End;

The Show parameter is one of the cmdShow constants documented in the online help under “ShowWindow.” Usually a caller will use sw_ShowNormal.

If the value returned by WinExec is 32 or greater, the operation was successful and the value is the instance handle to the new application.

The last method will make the task of starting a DDE server much easier. It derives a .EXE filename from a service name.

Remember, most applications enter themselves (or were entered during setup) into the Registration Database. Given the name of the service we desire, we must find the matching entry and retrieve the command line used to start the program. That’s what SetServer is for.

This method includes three nested functions; here’s the main code block first:

Procedure tExeFile.SetService

		(const Service: tOString);

	Function EnumKey

			

			

		End;

	Procedure QueryValue

			(const Key: tOString; var Value: tOString);

			

			

		End;

	Procedure TrimArguments;

			

			

		End;

	Var

		i: LongInt;

		Temp, Key: tOString;

	Begin

	Clear;

	Key.Init (128);

	Temp.Init (128);

	i := 0;

	While EnumKey (i, Key) do

		Begin

		QueryValue (Key, Temp);

		If Temp.Matches (Service) then

			Begin

			Key.AppendP ('\shell\open\command');

			QueryValue (Key, Self);

			TrimArguments;

			Break;

			End;

		Inc (i);

		End;

	Temp.Done;

	Key.Done;

	End;

EnumKey is called for each key in the Registration Database, or until we find the item we want. EnumKey returns the key itself in the Key object. The service name we are looking for will not be a key; it will be the value of the key that also owns the command line, as shown in Figure 10.1.

The nested functions provide a layer of protection between the sane world of ObjectWindows and the rather odd parameter requirements of the Registration Database functions. For example, EnumKey invokes RegEnumKey:

Function EnumKey

		(i: LongInt; var Key: tOString): Boolean;

	Var

		Status, L: LongInt;

	Begin

	Key.SetMaxLength (128);

	L := Key.GetBufferLength;

	Status := RegEnumKey

		(HKEY_CLASSES_ROOT, i, Key.CString, L);

	If Status = error_Success then

		Begin

		Key.RecalcLength;

		EnumKey := True;

		End

	else

		Begin

		Key.Clear;

		EnumKey := False;

		End;

	End;

RegEnumKey’s fourth parameter is the culprit. It is a var LongInt parameter, meaning we can’t place Key.GetBufferLength there directly. It returns the number of characters placed into Key.CString, but this count includes the terminating null! I don’t trust it, so I use RecalcLength instead.

RegQueryValue provides a similar challenge, so I wrapped that in QueryValue:

Procedure QueryValue

		(const Key: tOString; var Value: tOString);

	Var

		L: LongInt;

	Begin

	Value.SetMaxLength (128);

	L := Value.GetBufferLength;

	RegQueryValue (HKEY_CLASSES_ROOT,

		Key.CString, Value.CString, L);

	Value.RecalcLength;

	End;

The command line we retrieve may include parameter placeholders, such as “%1”. The TrimArguments nested procedure gets rid of that:

Procedure TrimArguments;

	Var

		L: Word;

	Begin

	L := InStringP ('.EXE');

	If L > 0 then

		Begin

		Length := L + 3;

		CString[L+3] := #0;

		End;

	End;

To complete the ExeFile unit, then, we only need to create a resource file with those error messages. EXEFILE.RES only contains a stringtable:

STRINGTABLE LOADONCALL MOVEABLE DISCARDABLE

BEGIN

	10099, "Application Run Error"

	10100, "System was out of memory, executable file was corrupt, or relocations were invalid."

	10102, "File not found."

	10103, "Path not found."

	10105, "Sharing or network protection error."

	10106, "Library requires separate data segments for each task."

	10108, "Insufficient memory. Close some applications and try � again."

	10110, "Incorrect version of Windows."

	10111, "Invalid .EXE file. Either it isn't a Windows application, � or the file is corrupt."

	10112, "Application was designed for a different operating system."

	10113, "Application was designed for MS-DOS 4.0."

	10114, "Type of executable file was unknown."

	10115, "Application was designed for an earlier version of Windows. � Obtain an upgrade from the software manufacturer."

	10116, "Attempt to load a second instance of an application that � can rerun only one copy at a time."

	10119, "Attempt was made to load a compressed executable file. The � file must be decompressed before it can be loaded."

	10120, "Dynamic-link library (DLL) file was invalid. One of the � DLLs required to run this application was corrupt."

	10121, "Application requires 32-bit extensions."

END

There are some missing entries because WinExec does not use every possible error code.

Building a DDEML Client�tc "Building a DDEML Client"�

A DDEML client application must open a conversation with a server—possibly starting the server application, first—make requests or poke data to the server, then terminate the �conversation. Fortunately, client applications are much simpler than servers, especially with the tDde class we’ve already written to use as a framework.

The DDE client application we’re going to build has a very simple mission: It will consist of a multi-line edit control and a pushbutton labeled “Count Words”. You can type a few words into the edit control and push the button; the application will start a conversation with Word Counter, poke the text at it, request the count, close the conversation, and display the retrieved count in a message box.

To start, copy DLGSKEL.PAS and DLGSKEL.RES as CLITEST.PAS and CLITEST.RES, respectively. Open CLITEST.RES and make the following resource changes:

•	Remove all menu commands except for File..Exit.

•	Remove the accelerators; we won’t be using them.

•	Remove the About dialog.

•	Add string 10001 to the stringtable: “This server is not available. Would you like me to start it?”

•	Edit the Main dialog. Change the caption to “DDE Client Test”. Add an edit control with ID 1001; check the multi-line option on the control options dialog box. Add a pushbutton with ID 1002, with the caption “Count Words”. Add the status bar, ID 9999, as always.

Load CLITEST.PAS into the BPW IDE. The definitions should look like this:

Program CliTest;

	{$R CliTest.res}

	Uses

		Objects,

		OWindows,

		WinProcs,

		WinTypes,

		DlgApp,

		Controls,

		OString,

		DDE,

		ExeFile;

	Const

		id_Editbox = 1001;

		id_CountCommand = 1002;

	Type

		pMainDlg = ^tMainDlg;

		tMainDlg = Object (tDlgAppWindow)

			Editbox: tXEdit;

			MyDde: tDde;

			Constructor Init;

			Destructor Done; Virtual;

			Procedure CountWords (var Msg: tMessage);

				Virtual id_First + id_CountCommand;

			End;

	Type

		pDlgApp = ^tDlgApp;

		tDlgApp = Object (tApplication)

			Procedure InitMainWindow; Virtual;

			End;

The constructor and destructor for tMainDlg hold no surprises:

Constructor tMainDlg.Init;

	Begin

	Inherited Init;

	Editbox.InitResource (@Self, id_Editbox, 2048);

	MyDde.Init;

	End;

Destructor tMainDlg.Done;

	Begin

	Editbox.Done;

	MyDde.Done;

	Inherited Done;

	End;

There is no object representation for the pushbutton because we only need to handle its Click event, and that handling needs to be done by the dialog class. The CountWords method will receive any notifications from the pushbutton:

Procedure tMainDlg.CountWords (var Msg: tMessage);

	Var

		Buffer: tOString;

		MyConversation: tConversation;

		WordCounter: tExeFile;

	Begin

	If Msg.lParamHi = bn_Clicked then

		Begin

		Buffer.Init (0);

		Editbox.GetText (Buffer);

		WordCounter.Init (0);

		WordCounter.SetServiceP ('WordCounter');

		MyConversation.Connect

			('Word Counter', 'Counter', WordCounter);

		MyConversation.Poke ('Text', cf_Text, Buffer);

		MyConversation.Request

			('Count', cf_Text, Buffer);

		MyConversation.Done;

		MessageBox (hWindow,

			Buffer.CString, 'Count', 0);

		Buffer.Done;

		WordCounter.Done;

		End;

	End;

The local variable MyConversation is the object that represents the DDE conversation. Don’t be puzzled; we haven’t written these methods for the tConversation class yet. I want you to see them in context, first. Connect is a constructor for tConversation—remember, constructors don’t have to have the word “Init” in their names. tConversation already has an Init constructor for its use in a DDE server. Connect will initialize the object as well as begin a conversation. The tConversation methods Poke and Request are the client-point-of-view versions of the tItem methods of the same name, used by servers. Finally, the Done destructor terminates the conversation and disposes of itself. The Done destructor is the only one of these methods that already exists and has the appropriate behavior.

Now that you’ve seen the tConversation methods in use, let’s take a quick look at the rest of the CLITEST.PAS module:

Var

	MyDlgApp: tDlgApp;

Procedure tDlgApp.InitMainWindow;

	Begin

	MainWindow := New (pMainDlg, Init);

	End;

Begin

MyDlgApp.Init ('DDE Test Client');

MyDlgApp.Run;

MyDlgApp.Done;

End.

Turn now to the DDE unit where we’ll add the new methods.

The Connect constructor has several jobs in addition to property initialization:

Constructor tConversation.Connect

		(aServiceName, aTopicName: pChar;

		 Const ProgName: tExeFile

);

	Var

		ServiceName,

		TopicName: tAString;

		aTopic: pTopic;

		aConvID: hConv;

		ErrMsg: tOString;

		Response: Integer;

	Begin

	ServiceName.InitTextC (aServiceName);

	TopicName.InitTextC (aTopicName);

	aTopic := New (pTopic, Init (TopicName, Nil));

	aConvID := DdeConnect (MyDde^.Instance,

		ServiceName.GetAtom, TopicName.GetAtom, Nil);

	Init (aConvID, aTopic);

			

			

These first few lines are mostly setup for the call to DdeConnect. If DDEML can find a server with service and topic names that match the ones supplied, DdeConnect will create a DDEML conversation and return a handle to it. Note that we’ve created an “orphaned” Topic, one without a parent tService. Nil is specified, instead. The tConversation object expects a topic to be sent to its Init constructor. The only use tConversation will put it to (in a client) is to access the Name property.

If the DdeConnect function does not succeed, ConvID will contain a zero; we must test for that. The conventional behavior if a server isn’t running is to ask the user if he or she wants to start it:

If aConvID = 0 then

	Begin

	Active := False;

	ErrMsg.InitTextR (str DdeNotConnected);

	Response := MessageBox

		(

		Application^.MainWindow^.hWindow,

		ErrMsg.CString,

		ServiceName.CString,

		mb_IconQuestion or mb_YesNo

);

	ErrMsg.Done;

	If Response = idYes then

		If ProgName.Run (sw ShowNormal) then

			Connect (aServiceName, aTopicName, ProgName);

	End;

				

				

The Active property is set to False so that no attempt will be made to disconnect a conversation that never connected. The error message string resource constant, str_DdeNotConnected, will have to be added to the constants in the DDE unit. The string we added to the resource file has the ID 10001.

If the user clicks the Yes button, we’ll try to start an application whose filename is the same as the service name. If the attempt succeeds, Connect will be called recursively in an attempt to succeed on the next attempt. Whether it does or not, all that’s left here is to dispose of the local object variables:

ServiceName.Done;

TopicName.Done;

End;

The Poke method is just a wrapper for the DdeClientTransaction function. It converts the data from the more convenient tOString format to the form DDEML prefers:

Procedure tConversation.Poke

		(

		anItemName: pChar;

		aFormat: Word;

		const Buffer: tOString

);

	Var

		ItemName: tAString;

	Begin

	If Active then

		Begin

		ItemName.InitTextC (anItemName);

		DdeClientTransaction (Buffer.CString,

			Buffer.Length+1,

			ConvID,

			ItemName.GetAtom,

			aFormat,

			xtyp_Poke,

			Timeout * 1000,

			Nil);

		ItemName.Done;

		End;

	End;

One is added to Buffer.Length because tOStrings store data in a NULL-terminated format. Normally, NULL is not included in the character count, but when sending it to DdeClientTransaction, it must be.

The poke operation is synchronous—this method will not return until the server has accepted the poked data (or refused it). For Word Counter, that could be quite a few seconds if the block of text is massive enough. You should keep such concerns in mind as you design your clients, and remember to adjust the Timeout property if need be.

DDEML can be used to create asynchronous transactions. In this case, the callback function will be notified when the transaction completes. Personally, I think using such a technique complicates something that’s otherwise quite simple.

The Request method is similar to the Poke method. Even the same DDEML function, DdeClientTransaction, is used. But when requesting data, this function returns a DDEML data handle; the data must be wriggled out of the place DDEML is keeping it and put into the more convenient place passed as the Buffer parameter:

Procedure tConversation.Request

		(

		anItemName: pChar;

		aFormat: Word;

		var Buffer: tOString

);

	Var

		ItemName: tAString;

		Data: hDdeData;

	Begin

	If Active then

		Begin

		ItemName.InitTextC (anItemName);

		Data := DdeClientTransaction (Nil,

			0,

				ConvID,

			ItemName.GetAtom,

			aFormat,

			xtyp_Request,

			Timeout * 1000,

			Nil);

		ItemName.Done;

		Buffer.SetMaxLength (DdeGetData

			(Data, Nil, 0, 0));

		Buffer.Length := DdeGetData (Data,

			Buffer.CString, Buffer.GetMaxLength, 0) - 1;

		End;

	End;

Like DdeQueryString, DdeGetData returns the required buffer size if invoked with the buffer parameter set to Nil. Therefore, it is called twice: once to set Buffer’s maximum size, and once to get the data. When Length is set, one is subtracted from the count of characters returned. This assumes the data is in C-string format and has a trailing NULL that should not be counted in the string’s length. Many Clipboard formats besides cf_Text use C-strings. If you expect to deal with a format in which this behavior is not appropriate, you can either derive a new class from tConversation with a different Request method, or simply add one to the length of Buffer after the method returns.

At this point, you can compile and run CLITEST, type a few words into the edit box, and click the button. Word Counter will start and show that it’s counting words in a DDE transaction, and CLITEST will display the count in a message box when Word Counter is done.

Carry On More Than One Conversation at Once!

A client application can have more than one conversation going on at a time. Simply create as many tConversation objects as desired. Your application can communicate with many servers, or with one server on many topics, as needed.

Commanding a DDE Server�tc "Commanding a DDE Server"�

Some DDE servers accept commands from DDE clients. You’ve probably seen Windows-hosted installation programs that automatically add new groups and/or items to Program Manager. In this section, we’ll learn how we can do it, too.

Pulling data from, or poking it into, a server is pretty impressive. But the Windows paradigm is command-driven. Isn’t there a way to send commands to a server using DDE? Of course! You can invoke DdeClientTransaction with the xtyp_Execute transaction to do that �very thing.

To demonstrate, lets add an Options drop-down menu to INI Editor with one command: Add To Program Manager. Copy INIEDIT.PAS and INIEDIT.RES to the \CHAP10 subdirectory. Load INIEDIT.RES into Resource Workshop and make the menu addition; give it an ID of 701.

In BPW, add the following method to the DDE unit:

Procedure tConversation.Execute

		(const Buffer: tOString);

	Begin

	If Active then

		Begin

		DdeClientTransaction (Buffer.CString,

			Buffer.Length,

			ConvID,

			0,

			cf_Text,

			xtyp_Execute,

			Timeout * 1000,

			Nil);

		End;

	End;

The method is almost identical to Poke; its differences are omissions. There’s no need to supply a format or item name. Commands are tied to a conversation so you’ve already specified a service and a topic, but commands are not part of any item. Although the format parameter of DdeClientTransaction is supposed to be ignored for xtyp_Execute transactions, the documentation doesn’t say what to supply as this parameter. cf_Text seems like an innocuous value, and it works.

Now, load INIEDIT.PAS and add a reference to ExeFile to the Uses clause, and add the constant for the new menu command and its command handler:

Uses

			

			

	ExeFile;

Const

	cm_OptionsAddToProgMan = 701;

			

			

Type

	pMainDlg = ^tMainDlg;

	tMainDlg = Object (tDlgAppWindow)

			

			

		Procedure cmAddToProgramManager

			(var Msg: tMessage);

			Virtual cm_First + cm_OptionsAddToProgMan;

		End;

Procedure tMainDlg.cmAddToProgramManager (var Msg: tMessage);

	Procedure AppendMyName (var Commands: tOString);

		Var

			MyName: tOString;

		Begin

		MyName.Init (128);

		MyName.Length := GetModuleFileName (hInstance,

			MyName.CString, MyName.GetMaxLength + 1);

		Commands.Append (MyName);

		MyName.Done;

		End;

	Var

		Dde: tDde;

		Commands: tOString;

		ProgramFile: tExeFile;

		ProgMan: tConversation;

	Begin

	Commands.Init (64);

	Commands.SetTextP ('[CreateGroup(Configuration)]');

	Commands.AppendP ('[ShowGroup(Configuration,1)]');

	Commands.AppendP ('[AddItem(');

	AppendMyName (Commands);

	Commands.AppendP (',INI Editor)]');

	Dde.Init;

	ProgMan.InitTextP (‘Progman.Exe’);

	ProgMan.Connect ('ProgMan', 'ProgMan', ProgManFile);

	ProgMan.Execute (Commands);

	ProgMan.Done;

	Dde.Done;

	ProgManFile.Done;

	Commands.Done;

	End;

The cmAddToProgramManager method consists of three parts:

•	AppendMyName, a nested procedure, adds the pathname of the application program file to Command.

•	Command is initialized and given the command string to be sent to Program Manager, including the program filename.

•	Dde is initialized, the conversation is started, the command string is sent, and Dde is destroyed.

The format of the commands is interesting: You can send as many commands as you wish in a single call. Each command is bracketed, with parameters enclosed in parentheses. You can also add line feeds or carriage returns between commands, if you like.

Use All the Program Manager DDE Commands

Program Manager responds to the commands CreateGroup, ShowGroup, and AddItem, as well as others. They are listed in BPW’s online help under “Progman,” along with the syntax and a description of each one. You can also get a list of groups and details of each item programmatically with the Request method, using the items’ names listed under the same topic.

Accepting Commands from a DDE Client�tc "Accepting Commands from a DDE Client"�

It should come as no surprise that it is more work to build the ability to execute commands into a DDE server than it is to build the ability to send commands into a DDE client. Still, programming the DDEML aspect of this job only takes a few lines of code.

The tDde class can never be smart enough to actually execute commands from a DDE client. After all, how could we know what commands to build into it? A command list will always be unique to the server using it.

But the DDE-handling aspects of the job are always the same; we can implement them. Should you decide to add DDE commands to your application, you’ll just have to derive a specific class from tDde that overrides the tDde.Execute method appropriately.

The abstract tDde.Execute method is minimal:

Function tDde.Execute

		(

		const TopicName: tOString;

		Commands: tOString

): Boolean;

	Begin

	Execute := False;

	End;

The method is called from the callback function:

Function MyDdeProc

		(

		ConvType: Word;

		Format: Word;

		ConvID: hConv;

		hSz1, hSz2: hSz;

		Data: hDdeData;

		Data1, Data2: LongInt

): hDdeData; Export;

			

			

	Function Execute: LongInt;

		Var

			Conversation: pConversation;

			Command: tOString;

		Begin

		Execute := dde_fNotProcessed;

		Conversation :=

			MyDde^.FindConversation (ConvID);

		Command.Init (DdeGetData (Data, Nil, 0, 0)+1);

		Command.Length := DdeGetData (Data,

			Command.CString, Command.GetMaxLength+1, 0);

		Command.RecalcLength;

		If MyDde^.Execute

				(Conversation^.Topic^.Name, Command) then

			Execute := dde_fAck;

		Command.Done;

		End;

	Begin

	MyDdeProc := 0;

	Case ConvType of

			

			

		xtyp_Execute:

			MyDdeProc := Execute;

		End;

	End;

Since commands always arrive in the form of C-style strings, we convert them to tOString format for convenience. Commands are not associated with any item, but they are sent as part of a conversation on a specific topic, so we pass that along as well.

