Nearly every Windows application is file oriented. It creates files, opens and saves files, allows files to be “dropped” on it, and so forth While there are exceptions, like the Calculator applet and the Clock, in general, any work you do on the computer can be stored in a file.

In this chapter, we are going to construct a tDataFile object class to encapsulate all the control information usually needed in a file-oriented Windows application. We’ll also learn how to use the Windows Common Dialogs to help in opening and saving files, and how to make your application a drag-and-drop client. Finally, we’ll learn how to register an application with the Registration Database, so File Manager can start it automatically.

Creating a tDataFile Class�tc "Creating a tDataFile Class"�

It might seem that the various aspects of file management, even if limited to the higher-level functions, should be an inseparable part of tDlgAppWindow. After all, menu commands will open and save files; drag-and-drop involves “dropping” a file on the application window.

But by encapsulating these functions in a single object which tDlgAppWindow can instantiate as a property, we reap two important benefits. First, it prevents tDlgAppWindow from getting too cluttered. In the future, if you need to fix a file-related bug or add an enhancement, you’ll know right where to look. Second, the class is reusable. If you write a drawing application or one that uses MDI, you won’t be able to derive the app from tDlgAppWindow but, whatever you do derive it from, you’ll be able to include a tDataFile property.

Creating the tDataFile Unit�tc "Creating the tDataFile Unit"�

As always, the first step in creating a new class is to copy the CLASSKEL.PAS file to the project directory, naming it appropriately and putting the correct names in the file.

Since this is Chapter 5, we’ll create a subdirectory called CHAP05. Copy CLASSKEL.PAS and call it DATAFILE.PAS. Double-click on it to start BPW and load the new file. Then, change the default names and question marks so the file looks like this:

Unit DataFile;

	(***)

						Interface

	(***)

	Uses

		WinTypes,

		WinProcs,

		Objects,

		OWindows,

		OString;

	Type

		pFileInfo = ^tDataFile;

		tDataFile = Object (tObject)

			Constructor Init;

			Destructor Done; Virtual;

			End;

	(***)

					Implementation

	(***)

	Constructor tDataFile.Init;

		Begin

		Inherited Init;

		End;

	Destructor tDataFile.Done;

		Begin

		Inherited Done;

		End;

	End.

Note there are no Load and Store methods defined. By its nature, a tDataFile object will be an ephemeral one; I can’t imagine that one would ever be saved to disk. Since streaming will not be implemented for tDataFile objects, there is no need for the call to RegisterType, either.

You Dirty File, You�tc "You Dirty File, You"�

Probably the simplest property a file can have is its “Dirty” flag. This indicates whether or not changes have been made to the file since it was loaded and, therefore, whether it’s necessary to write it back to disk. If the file has not been altered, it is “clean;” otherwise it is considered “dirty.” This impacts which menu commands are available and whether the application can be closed without warning the user. We’ll start implementation of the tDataFile class with the Dirty property.

To fully implement the Dirty property, we actually need two properties and several methods:

•	The Dirty flag itself

•	A Pathname property, to construct a message box that asks the user if the “dirty” file should be changed

•	A ShouldSave method, to be invoked by the tDlgAppWindow as part of its CanClose processing

•	FileNew, FileOpen, and FileSave methods added to tDlgAppWindow �to test and set the Dirty flag

As usual, the framework goes in first; that is, the properties and the method definitions.

Type

	pFileInfo = ^tDataFile;

	tDataFile = Object (tObject)

		Dirty: Boolean;

		Pathname: tOString;

		Constructor Init;

		Destructor Done; Virtual;

		Function ShouldSave

			(

			Window: pWindowsObject;

			BaseCaption: pOString

): Boolean;

		End;

One other thing must be added to the top of the Implementation section: a list of constants to access the strings we put in the string table resource. Remember, these strings are the ones subject to translation if this application is ever translated into another language, including the strings used in the “Do you want to save...?” message box.

Const

	str_Filters = 500;

	str_Extension = 501;

	str_DoYouWantToSave = 502;

	str_Untitled = 503;

Init and Done are just what you’d expect, given the two properties:

Constructor tDataFile.Init;

	Var

		Length, i: Integer;

	Begin

	Inherited Init;

	Dirty := False;

	PathName.Init (fsPathName);

	End;

Destructor tDataFile.Done;

	Begin

	PathName.Done;

	Inherited Done;

	End;

PathName is initialized to an empty buffer of adequate size to store �the longest pathname the operating system currently supports. By using the supplied constant fsPathName, future operating system enhancements will be automatically accommodated.

The ShouldSave method will be invoked by tDlgAppWindow as part of its CanClose processing. We’ll look at that shortly; first let’s look at ShouldSave. As its name indicates, this function method returns True if the file should be saved, and False if not.

Function tDataFile.ShouldSave

		(

		Window: pWindowsObject;

		BaseCaption: pOString

): Boolean;

	Var

		Prompt: tOString;

		Result: Integer;

	Begin

	ShouldSave := False;

	If Dirty then

		Begin

		Prompt.Init (512);

		Prompt.SetTextR (str_DoYouWantToSave);

		If PathName.Length = 0 then

			Prompt.AppendR (str_Untitled)

		else

			Prompt.Append (PathName);

		Prompt.AppendP ('?');

		Result := MessageBox (Window^.hWindow,

			Prompt.CString,

			BaseCaption^.CString,

			mb_IconExclamation or mb_YesNoCancel);

		If Result = id_No then

			Dirty := False;

		ShouldSave := (Result = id_Yes);

		Prompt.Done;

		End;

	End;

ShouldSave is initialized to False; if the Dirty flag is also False, then no other code will be executed, and CanClose is told the file does not need to be saved. On the other hand, if Dirty is True, the user will be prompted. The Prompt local variable is initialized and a prompt constructed. The first part of the message is retrieved from the application’s resource pool, the filename—or, if the file has not yet been named, the string “(Untitled)”—and a question mark are put together, and a message box is displayed with three buttons: Yes, No, and Cancel. If the user selects No, it means he or she understands changes have been made to the file but they are to be discarded. In that case, the Dirty flag is simply set to False.

If the user selects Yes, the method returns True; otherwise, it returns False. Thus, the method only tells its caller to save the file if the user says, “Yes, please save the file.” (If the file does not yet have a filename, an additional step will have to be taken: displaying the FileSave common dialog box. We’ll worry about that later in this chapter.)

To see how ShouldSave is used in CanClose, we’ll jump over to the tDlgAppWindow class (in DLGAPP.PAS) and add a CanClose method. To do that, we first have to do a little housekeeping:

•	Add DataFile to the Units clause:

Uses

	WinTypes,

	WinProcs,

	Objects,

	OWindows,

	ODialogs,

	WinDos,

	OString,

	DataFile;

•	Add a tDataFile property to tDlgAppWindow, and add the CanClose and FileSave methods:

Type

	pDlgAppWindow = ^tDlgAppWindow;

	tDlgAppWindow = Object (tDlgWindow)

		BaseCaption: tOString;

		DataFile: tDataFile;

		Constructor Init;

			

			

		Function CanClose: Boolean; Virtual;

		Procedure FileSave; Virtual;

		End;

•	Initialize and dispose of the new property in the tDlgAppWindow Init and Done methods:

Constructor tDlgAppWindow.Init;

	Begin

	Inherited Init (Nil, 'MAIN');

	BaseCaption.Init (0);

	DataFile.Init;

	End;

Destructor tDlgAppWindow.Done;

	Begin

	BaseCaption.Done;

	DataFile.Done;

	Inherited Done;

	End;

A Windows application can be closed in several ways, all of which invoke the application’s main window’s CanClose method. A default CanClose is supplied by tWindowsObject. This default always returns True, which is why we were able to close DLGSKEL when we ran it for testing. But now we want to have tDlgAppWindow.CanClose invoke tDataFile.ShouldSave and then inspect the tDataFile.Dirty flag. Why both? Watch:

Function tDlgAppWindow.CanClose: Boolean;

	Begin

	If DataFile.ShouldSave (@Self, @BaseCaption) then

		FileSave;

	CanClose := not DataFile.Dirty;

	End;

Procedure tDlgAppWindow.FileSave;

	Begin

	DataFile.Dirty := False;

	End;

When CanClose is invoked, there are four possible scenarios:

•	The file is not dirty: ShouldSave returns False without prompting the user, and CanClose returns True.

•	The file is dirty, and the user wants to save it (OK): ShouldSave returns True, the file is saved, which clears the Dirty flag, and CanClose returns True.

•	The file is dirty, but the user wants to discard the changes (No): ShouldSave clears the Dirty flag and returns False, so the file is not saved but CanClose returns True.

•	The file is dirty, and the user doesn’t want to close the app at this time (Cancel): ShouldSave returns False, so the file is not saved. Dirty will still be True, so CanClose returns False and the application will not be closed.

If you want to test what you’ve done so far, load DLGSKEL.PAS and add the virtual SetupWindow method to the tMainDlg class:

Procedure tMainDlg.SetupWindow;

	Begin

	Inherited SetupWindow;

	DataFile.Dirty := True;

	End;

Now, when you run DLGSKEL and choose the File..Exit command, you can experiment with answering Yes, No, and Cancel when the Save Option dialog box appears, as shown in Figure 5.1.

� INCLUDEPICTURE F:\\INSIDER\\FINAL\\FIG05-01.TIF * MERGEFORMAT ���

Figure 5.1 The Save Option dialog box.

Adding Menu Control to tDlgAppWindow�tc "Adding Menu Control to tDlgAppWindow"�

We’ve already established how tDlgAppWindow applications will be file-based; we’ve added a Dirty flag to indicate whether the file has been changed and needs to be saved. The flip side is that if the file has not been changed, the File..Save menu command should be disabled. Adding a tMenuItem property makes this a simple chore.

The first step in modifying the DLGAPP.PAS unit is to add the MENUS unit reference to the Uses clause:

Uses

	WinTypes,

	WinProcs,

	Objects,

	OWindows,

	WinDos,

	OString,

	FileInfo,

	Menus;

The next step is to add a FileSaveMenu property:

Type

	pDlgAppWindow = ^tDlgAppWindow;

	tDlgAppWindow = Object (tDlgWindow)

		BaseCaption: tOString;

		DataFile: tDataFile;

		FileSaveMenu: tMenuItem;

		Constructor Init;

			

			

The FileSaveMenu property will have to be initialized and disposed of. The disposal is easy:

Destructor tDlgAppWindow.Done;

	Begin

	BaseCaption.Done;

	DataFile.Done;

	FileSaveMenu.Done;

	Inherited Done;

	End;

The initialization is trickier. The problem is that, when tDlgAppWindow.Init is being executed, there is no actual, corresponding window as yet, and therefore, no menu to read. Any objects that require, as part of their initialization, information regarding real windows or other system components, must wait until the SetupWindow method is invoked:

Procedure tDlgAppWindow.SetupWindow;

	Var

		FileMenu: tHandle;

	Begin

	Inherited SetupWindow;

	BaseCaption.SetTextW (@Self);

	FileMenu :=

		GetSubMenu (GetMenu (Self.hWindow), 0);

	FileSaveMenu.InitResource (FileMenu, 2);

	End;

Now, after the tDlgAppWindow window has been created, but before it has been displayed, our SetupWindow method will initialize the FileSaveMenu property for us.

The Window Is Not Valid until SetupWindow �Is Called

If you’re trying to initialize or use an object in your application’s Init constructor, and keep winding up with zero or Nil values—or worse, getting General Protection faults—try moving the code to the SetupWindow method. Odds are you’ve been trying to access a window or system resource that does not yet exist.

The next step is to add processing of the wm_InitMenuPopup Windows message. This is the first Windows message we’ve dealt with. Windows messages are much like menu command messages, except that the dynamic methods that process them are offset from wm_First instead of cm_First. The method definition, added to tDlgAppWindow, is as follows:

Type

	pDlgAppWindow = ^tDlgAppWindow;

	tDlgAppWindow = Object (tDlgWindow)

			

			

		Procedure wmInitMenuPopup (Var Msg: tMessage);

			Virtual wm_First + wm_InitMenuPopup;

		End;

This method will be invoked whenever a drop-down menu is about to drop down (or pop up, to use the original terminology). This is usually when the user clicks on a top-level menu item or presses a speed key (Alt + the command’s underlined letter) of one; however, it can also happen under program control. In any case, make sure the File..Save command is enabled or disabled, based on the state of the Dirty flag. The wParam component of Msg contains the handle to the menu about to drop down; if it isn’t the ParentMenu of FileSaveMenu, we don’t have to worry about it. If wParam contains the handle to some other drop-down menu, on the other hand, all we have to do is call the Enable or Disable method, as appropriate:

Procedure tDlgAppWindow.wmInitMenuPopup

		(Var Msg: tMessage);

	Begin

	If Msg.wParam = FileSaveMenu.ParentMenu then

		If DataFile.Dirty then

			FileSaveMenu.Enable

		else

			FileSaveMenu.Disable;

	End;

If after adding and compiling this code you compile and run DLGSKEL and drop the File menu, you’ll see the Save item is grayed and disabled. (If you hard-coded setting DataFile.Dirty to True for the test earlier in this chapter, be sure to remove or comment out that code.)

Opening Files�tc "Opening Files"�

Full-featured Windows applications provide at least three methods for opening a file: the File..Open menu command, the command line, and drag-and-drop. Applications with a tDataFile property will support all of these.

Adding a FileOpen Common Dialog�tc "Adding a FileOpen Common Dialog"�

Windows 3.1 introduced the concept of common dialog boxes, which programmers can use in standard situations without having to create new ones every time. This contributes further to the standardization of Windows’ “look and feel” so that users don’t have to learn every aspect of a new application. By adding a FileOpen method to tDataFile, and a cmFileOpen method to tDlgAppWindow, we can add a full-featured File Open dialog box with just a few lines of simple code.

All the common dialogs work in the same general way: each has a record you must initialize. You then pass the record as a parameter to an API call exported from the CommDlg unit. At this point the dialog box appears. When the user clicks on either the OK or Cancel button, the dialog box vanishes and the API call returns. You can then examine the passed record to obtain the user’s responses.

For the FileOpen dialog, the record is of the tOpenFileName type. You must supply at least as many data items as you’ll get out. (This is not the Latin word data, which is plural. The singular for data is datum. Not being a priest or doctor, I prefer the American English word “data,” a collective singular noun like “government” or “Fleetwood Mac.”)

One of the items we must supply is lpstrFilter. (Sorry about the Hungarian notation; it’s somebody else’s record and we’re stuck with it.) If you run Cardfile, say, or Notepad, and choose the File..Open command, you’ll see at the bottom a combo box labeled, “List Files of Type:.” The contents of this combo box are the filters, which you must supply. Since the user, who may not be an English-speaker, will have to read this text, it is stored in the application’s resource pool. (The common dialogs themselves are distributed with Windows 3.1 in a language suitable to the purchaser’s location.) The filter string is already present in DLGSKEL.RES; we placed it there with the other strings in Chapter 2. All we have to do is get it out and prepare it for use.

We’ll also need a default file extension. Since the OpenFile dialog may be called often, and there is some preparation involved, let’s store these strings and the other data we’ll need to retain in a couple of new tDataFile properties:

Type

	pDataFile = ^tDataFile;

	tDataFile = Object (tObject)

		Dirty: Boolean;

		Pathname: tOString;

		Filters: tOString;

		FilterIndex: Word;

		Extension: tOString;

		Title: tOString;

		Constructor Init;

			

			

The new properties are Filters, FilterIndex, Extension, and Title. Most of them are tOString objects, so they’ll have to be initialized:

Constructor tDataFile.Init;

	Var

		Length, i: Integer;

	Begin

	Inherited Init;

	Dirty := False;

	PathName.Init (fsPathName);

	Filters.InitTextR (str_Filters);

	For i := 0 to Pred (Filters.Length) do

		If Filters.CString[i] = '|' then

			Filters.CString[i] := #0;

	FilterIndex := 1;

	Extension.InitTextR (str_Extension);

	Title.Init (fsFileName + fsExtension);

	End;

We initialize the Filters property with the InitTextR constructor; this will allocate exactly enough space and load the string from the application’s resource pool. But then we have to prepare the string. The OpenFile common dialog expects each of the components—that is, each filter and each filter description—to be delimited from the others by a C-style NULL character. We couldn’t insert one conveniently in the Resource Workshop, so we substituted the pipe character (|). (This is the same substitution the designers of Visual Basic used, and for the same reason: embedded nulls are awkward to work with.) But now we have to run through the string and replace the pipes with nulls. To do this, we use the for loop.

The format of the filters is as follows: each is specified as a pair. The first half of the pair is the string that appears in the combo box. Examples include “Text files (*.txt)” and “Word documents (*.doc)”. The parenthetical file specification is not needed, but is customary. The second half of the pair is the actual wildcard specification that will retrieve files of the desired type. This generally has the structure “*.ext” but any wildcard will work. For example, the filter

Files beginning with A|A*.*|

may be unusual, but it’s legal.

End the List of Filters with a Double NULL

Be sure to terminate each pair, even the last one, with the pipe character. Since each element of the filters is terminated by a NULL, the common dialogs need to have the entire list terminated with a double NULL. Since our substitution routine replaces pipes with NULLs, and since the string stored by tOString includes a terminating NULL anyway, this does the trick.

The FilterIndex specifies which of our filters is the one to be positioned in the combo box as the default when the dialog first appears. Unlike many Windows indexes that use a base of zero, the first filter pair has the index 1.

The Extension property is simply initialized by loading from the resource pool. This supplies the default extension for files when the user doesn’t include one. It should not include a leading period.

The Title property is filled for us by the OpenFile dialog; we merely have to pre-allocate enough space. This property will contain the root filename, without a path. We specify as an allocated size the length of a root name (currently eight characters) plus an extension (fsExtension is equal to four, which includes the period). By using symbolic, WinDOS-supplied constants for these values, if future operating system enhancements make these values larger, you’ll only have to recompile.

As usual, Done includes no surprises, but we’ll list it here anyway:

Destructor tDataFile.Done;

	Begin

	PathName.Done;

	Filters.Done;

	Extension.Done;

	Title.Done;

	Inherited Done;

	End;

Finally, we come to the method that will actually invoke the OpenFile common dialog:

Function tDataFile.ShouldOpen

		(Window: pWindowsObject): Boolean;

	Var

		OpenFileName: tOpenFileName;

	Begin

	OpenFileName.lStructSize := SizeOf (OpenFileName);

	OpenFileName.hWndOwner := Window^.hWindow;

	OpenFileName.hInstance := hInstance;

	OpenFileName.lpstrFilter := Filters.CString;

	OpenFileName.lpstrCustomFilter := Nil;

	OpenFileName.nFilterIndex := FilterIndex;

	OpenFileName.lpstrFile := PathName.CString;

	OpenFileName.nMaxFile := PathName.GetMaxLength;

	OpenFileName.lpstrFileTitle := Title.CString;

	OpenFileName.nMaxFileTitle :=

		Title.GetMaxLength;

	OpenFileName.lpstrInitialDir := Nil;

	OpenFileName.lpstrTitle := Nil;

	OpenFileName.Flags := ofn_FileMustExist or

		ofn_NoChangeDir or

		ofn_PathMustExist;

	OpenFileName.lpstrDefExt := Extension.CString;

	OpenFile := GetOpenFileName (OpenFileName);

	PathName.RecalcLength;

	Title.RecalcLength;

	End;

You should find the values we’ve supplied to be self-explanatory. Let me explain briefly the values we did not supply.

First among these is lpstrCustomFilter. This is a buffer you can optionally supply. If you do, and if the user puts some wildcards into the Filename field on the OpenFile common dialog, the wildcards will be copied into this buffer. If you then examine the buffer and add the descriptive text portion of the filter pair, the next time the OpenFile common dialog is invoked, the additional filters will be included in the filters combo box. To decline this added functionality, set the field to Nil.

lpstrInitialDir can be pointed to a buffer containing a directory, other than the current directory, at which you would like the OpenFile common dialog to start. By assigning it Nil, we tell OpenFile to use the current directory as a base.

lpstrTitle, as opposed to lpstrFileTitle, is an input field. This sets the caption of the OpenFile dialog box. If you want to override the default caption, supply the address of the caption you prefer. Nil gets you the default.

The Flags field can give you an amazing degree of control over what is, after all, a stock dialog box. There are too many options to describe here, but I encourage you to check out tOpenFileName in the online help.

Having supplied data or Nil for each field, we can then invoke GetOpenFileName. This function will return True if the user selects a file and clicks OK, so we can simply return what it returned without worrying further about it.

On occasion it will be convenient to be able to clear the Pathname, Title and Dirty flag all at once. The Clear method provides this:

Procedure tDataFile.Clear;

	Begin

	PathName.Clear;

	Title.Clear;

	Dirty := False;

	End;

The GetOpenFileName method must be invoked in response to the user choosing the File..Open command. Switching, then, to DLGAPP.PAS, we must add the definition of the cmFileOpen event handler, as well as a FileOpen method:

Type

	pDlgAppWindow = ^tDlgAppWindow;

	tDlgAppWindow = Object (tDlgWindow)

			

			

		Procedure cmFileOpen (Var Msg: tMessage);

			Virtual cm_First + cm_FileOpen;

		Procedure FileOpen; Virtual;

		End;

The cmFileOpen method, which is invoked when the user chooses File..Open, is quite simple:

Procedure tDlgAppWindow.cmFileOpen (Var Msg: tMessage);

	Begin

	If DataFile.ShouldSave (@Self, @BaseCaption) then

		FileSave;

	If DataFile.ShouldOpen (@Self) then

		FileOpen;

	End;

Note that we have reused the ShouldSave method in a slightly new context: if the loaded file is dirty, the user must be prompted to save it before another file replaces it.

The FileOpen method is even simpler:

Procedure tDlgAppWindow.FileOpen;

	Begin

	DataFile.Dirty := False;

	End;

That’s right—all FileOpen does is clear the Dirty flag. FileOpen is an abstract method, the same way tDlgAppWindow is an abstract class: it is intended that tDlgAppWindow will be used only as an ancestor class, and it is intended that FileOpen be one of the methods augmented by a descendent method of the same name. That’s why FileOpen is defined as virtual.

The existence of both cmFileOpen and FileOpen points out the difference between an event handler and a method. Even though both are often called methods, event handlers don’t usually do anything but invoke other, appropriate methods. Actual methods do the work. If a filename is supplied with a File Open request, there’s no need to bother with cmFileOpen and the OpenFile common dialog; the FileOpen method is all that’s needed.

Actually, though, FileOpen is going to be given another small job to do in the next section, when we use the tDataFile.Title property to set the application’s caption.

To test, choose the Run..Run command on the BPW menu, then choose File..Open on Dialog Skel.

Managing the Application’s Caption Bar�tc "Managing the Application’s Caption Bar"�

Most Windows applications are file-oriented; that is, the application is intended to create or open a file, do something to the data in that file, then save any changes. Traditionally, the name of the currently open file is added to the name of the application that appears on the application’s caption bar. The tDlgAppWindow.SetCaption method handles this task automatically.

We’ve already got in place almost everything we need to set captions appropriately. The SetCaption method needs the BaseCaption property, the tDataFile.Title property and, of course, the tOString class:

Procedure tDlgAppWindow.SetCaption;

	Var

		Caption: tOString;

	Begin

	Caption.Init (BaseCaption.Length +

		3 + DataFile.Title.Length);

	Caption.SetText (BaseCaption);

	If DataFile.Title.Length > 0 then

		Begin

		Caption.AppendC (' - ');

		Caption.Append (DataFile.Title);

		End;

	SetWindowText (hWindow, Caption.CString);

	Caption.Done;

	End;

We initialize the local Caption object to a size adequate for the job, add the components to it, then invoke the Windows API procedure SetWindowText to actually set the caption. Done is invoked to dispose of the Caption object, and the job is complete.

To invoke SetCaption, we need to add one line to the FileOpen method:

Procedure tDlgAppWindow.FileOpen;

	Begin

	DataFile.Dirty := False;

	SetCaption;

	End;

We should also add calls to SetCaption in the FileNew and FileSave methods. Why in FileSave? Because this method is sometimes invoked after the user chooses File..Save As, when the filename may have changed.

Procedure tDlgAppWindow.FileNew;

	Begin

	DataFile.Clear;

	SetCaption;

	End;

Procedure tDlgAppWindow.FileSave;

	Begin

	DataFile.Dirty := False;

	SetCaption;

	End;

To test, choose BPW’s Run..Run command. When DlgSkel starts, choose its File..Open command, Select a file, then click OK. (You’ll have to select “all files” from the Files Type combo box; it’s unlikely that you’ll have any files with a .SKL extension.) The caption will change.

Opening a File from the Command Line�tc "Opening a File from the Command Line"�

Standard Windows file-oriented applications allow filenames to be specified on the command line. If this is done, the result is the same as if the user had started the application, chosen File..Open, selected a file from the File Open dialog box, and clicked OK—all automatically. By enhancing tDlgAppWindow, we can add this ability to our generic dialog app.

Actually, programming the ability to read filenames on the command line is just part of a larger problem: passing arguments of any kind on the command line. In Windows applications, command line parameters are traditionally of two types: filenames and switches. Switches always begin with a hyphen (-) or a slash (/); filenames never do, so they are easy to distinguish. They should not be positionally dependent, however; that is, they should be seen as a collection of arguments in no particular order.

Command line arguments are supplied, as they are in Borland Pascal DOS programs, through the ParamStr and ParamCount functions. In addition, the entire command line in C-string form is available through the CmdLine global variable, but we won’t have any need for that.

Basically, the ParseCommandLine method we’re about to write just runs through the parameters, if any, looking to see which are filenames and which are switches. tDlgAppWindow applications are only intended to deal with single files at a time, so the last filename in the list is the one we’ll use. Switches must be dealt with in the descendant (real) application, so we’ll pass them to an abstract SetArgument method that does nothing. (The descendant application will override this method if it’s expecting any command line switches.)

First, though, we know the ParseCommandLine method will want to send a filename to the DataFile property, but there’s no method waiting there to receive it. We’ll have to write one. The tDataFile.SetPathname method provides an alternative to ShouldOpen as a means of setting the object’s properties to reflect those of a specified file:

Procedure tDataFile.SetPathname

		(Const aPathname: tOString);

	Var

		Dir: tOString;

		Name: tOString;

		Ext: tOString;

	Begin

	Dir.Init (fsPathName);

	Name.Init (fsFileName);

	Ext.Init (fsExtension);

	FileSplit (aPathName.CString,

	Dir.CString, Name.CString, Ext.CString);

	Dir.RecalcLength;

	Name.RecalcLength;

	Ext.RecalcLength;

	If Ext.Length = 0 then

		Begin

		Ext.SetTextC ('.');

		Ext.Append (Extension);

		End;

	Pathname.SetText (Dir);

	PathName.Append (Name);

	PathName.Append (Ext);

	Title.SetText (Name);

	Title.Append (Ext);

	Dirty := False;

	Dir.Done;

	Name.Done;

	Ext.Done;

	End;

Because it’s relatively long, this method may look intimidating at first. But really it’s just manipulating the passed aPathName parameter to put the appropriate parts in the proper properties.

The key function is FileSplit, which is part of the WinDOS unit. It takes aPathName and breaks it into its component pieces: the directory (which includes the drive designator), the root name, and the extension (which includes the leading period). Since those pieces are being transferred into the tOString buffers without telling us how many characters were moved, we have to invoke the tOString.RecalcLength method afterward.

If no extension was supplied—not even a period—we use our default Extension property to supply one. We then concatenate all pieces to give us PathName, and just the root name and extension to give us Title. Since a new name represents a fresh file, we set Dirty to False. Once we’ve disposed of the local objects, we’re done.

Now we’re ready to parse the command line. After opening DLGAPP.PAS, we add the following methods:

Procedure tDlgAppWindow.ParseCommandLine;

	Var

		p: Word;

		Param: tOString;

	Begin

	Param.Init (0);

	For p := 1 to ParamCount do

		Begin

		Param.SetTextP (ParamStr(p));

		If not (Param.CString[0] in ['/', '-']) then

			DataFile.SetPathname (Param)

		else

			SetArgument (Param);

		End;

	Param.Done;

	End;

Procedure tDlgAppWindow.SetArgument

		(Var Param: tOString);

	Begin

	End;

ParseCommandLine simply loops through the already-tokenized �arguments, setting the Param local object and checking to see if the first character indicates whether this parameter is a switch. If it is, it’s passed to the virtual SetArgument method; if it’s not, DataFile.SetPathname is invoked.

With this setup, we can add to the SetupWindow method:

Procedure tDlgAppWindow.SetupWindow;

	Var

		FileMenu: tHandle;

	Begin

	Inherited SetupWindow;

	BaseCaption.SetTextW (@Self);

	FileMenu :=

		GetSubMenu (GetMenu (Self.hWindow), 0);

	FileSaveMenu.InitResource (FileMenu, 2);

	ParseCommandLine;

	If DataFile.PathName.Length = 0 then

		FileNew

	else

		FileOpen;

	End;

After compiling, you can run DlgSkel by entering a filename on the command line; it will automatically “load,” and you’ll see the caption adjust accordingly.

Using Drag-and-Drop�tc "Using Drag-and-Drop"�

Drag-and-drop, introduced with Windows 3.1 (although in limited use prior to that), allows you to use the mouse to “drag” a file from File Manager to an application, as a shortcut to the File..Open command. The target application, however, must be “registered” as a drag-and-drop application, and must respond to the drag-and-drop system messages. Given the framework we’ve already built with tDlgAppWindow, adding drag-and-drop just takes one new method and a few lines of code.

There is no reason why any application with a File..Open command should not implement the drag-and-drop function. Think of it as just another shortcut for the File..Open command.

An application only needs to do five things to incorporate drag-and-drop. First, the application must include the ShellAPI and Win31 units in its Uses clause:

Uses

			

			

	ShellAPI,

	Win31;

Second, it must announce its willingness to accept dragged files via the AcceptDraggedFiles API call:

Procedure tDlgAppWindow.SetupWindow;

			

			

	If DataFile.PathName.Length = 0 then

		FileNew

	else

		FileOpen;

	DragAcceptFiles (hWindow, True);

	End;

Since DragAcceptFiles requires a valid window handle as a parameter, it cannot be called until (or after) SetupWindow is invoked.

To accommodate the possibility that a user may drag a subdirectory or group of files to the application, we have to be prepared to display an error message. We already included the text for the error message in the DLGSKEL.RES stringtable. To access these strings, add the following constants to the DlgApp unit:

Const

	str_CannotDropMultipleFiles = 504;

	str_CannotDropSubdirectory = 505;

Finally, the application must process the WM_DROPFILES message. If the user tries to drop more than one file, or even a whole subdirectory, we’ll have to invoke an ErrorBox method for tDlgAppWindow that will accept, as a parameter, the stringtable ID of the message to be displayed:

Procedure tDlgAppWindow.ErrorBox (str_ID: Word);

	Var

		ErrorMsg: tOString;

	Begin

	ErrorMsg.InitTextR (str_ID);

	MessageBox (hWindow,

		ErrorMsg.CString, BaseCaption.CString,

		mb_IconAsterisk);

	ErrorMsg.Done;

	End;

The wmDropFiles method has a nested function for determining whether a given dropped file is actually a directory. Let’s examine it first:

Procedure tDlgAppWindow.wmDropFiles

		(Var Msg: tMessage);

	Function isSubdirectory

			(Var TestName: tOString): Boolean;

		Var

			Info: tSearchRec;

		Begin

		FindFirst (TestName.CString, faAnyFile, Info);

		isSubdirectory :=

			((Info.Attr and faDirectory) = faDirectory);

		End;

			

			

FindFirst comes from the WinDOS unit. It is usually used to begin a traversal of an entire directory, but it can also be used to identify a particular directory entry. The flags FindFirst returns from the entry are put in the tSearchRec field, Attr. If the bit represented by faDirectory is “on,” the entry is a directory. If somehow the name of a non-existent file was dragged to the application (though I don’t know how that could happen), that bit still won’t be on.

The wmDropFiles method continues with a couple of local variables and the code itself:

		

		

Var

	DropCount: Word;

	FileName: tOString;

Begin

FileName.Init (fsPathName);

DropCount :=

	DragQueryFile (Msg.wParam, Word (-1), Nil, 0);

If DropCount > 1 then

	ErrorBox (str_CannotDropMultipleFiles)

else

	Begin

	FileName.Length :=

		DragQueryFile (Msg.wParam, 0,

			FileName.CString,

			FileName.GetMaxLength);

	If isSubdirectory (FileName) then

		ErrorBox (str_CannotDropSubdirectory)

	else

		Begin

		If DataFile.ShouldSave (@Self, @BaseCaption) then

			FileSave;

		If not DataFile.Dirty then

			Begin

			DataFile.SetPathname (FileName);

			FileOpen;

			BringWindowToTop (hWindow);

			End;

		End;

	End;

DragFinish (Msg.wParam);

End;

The DragQueryFile function returns a count of items dragged if the second parameter is -1. (We had to cast to a word because, in the ShellAPI unit, the second parameter of DragQueryFile is defined as being a word, but Borland Pascal considers -1 to be an integer.) If more than one file was dragged to the application, the ErrorBox method is invoked.

If there was only one entity dragged, it still could be a subdirectory. If it was, again the ErrorBox method is invoked. If not, DataFile.ShouldSave is called, in case there was already a dirty file in the application. After that, if the file is still dirty, it means the user canceled out of the operation. Only if the dirty flag is clear do we invoke DataFile.SetPathname and FileOpen.

If the user dragged a file from File Manager to our application, File Manager will still have the focus. BringWindowToTop is a Windows API procedure that will pop the application to the top of the stack of overlapping windows. This technique helps to further the illusion that File Manager has “handed off” control to the app receiving the dragged file.

At the conclusion of the method, whether there were any errors or not, DragFinish must be called to terminate the operation (releasing the shared global memory Windows allocated for the buffer holding the filename).

After compiling, you can test this method by simply dragging items from the File Manager and watching for error messages or to see if the caption bar changes.

Additional File-Management Functions�tc "Additional File-Management Functions"�

In addition to opening existing files, the tDataFile class must assist in creating new files and saving user changes.

Creating a New File�tc "Creating a New File"�

tDialogApp doesn’t actually create files, but the FileNew method deals with the housekeeping involved in accessing a new file, and cmFileNew causes FileNew to be invoked when the user chooses the File..New command from the menu.

We wrote a FileNew method earlier in this chapter. Now we’ll add an event handler to trigger it:

Type

	pDlgAppWindow = ^tDlgAppWindow;

	tDlgAppWindow = Object (tDlgWindow)

			

			

		Procedure cmFileNew (Var Msg: tMessage);

			Virtual cm_First + cm_FileNew;

		End;

			

			

Procedure tDlgAppWindow.cmFileNew

		(Var Msg: tMessage);

	Begin

	If DataFile.ShouldSave (@Self, @BaseCaption) then

		FileSave;

	FileNew;

	End;

Like cmFileOpen, cmFileNew gives the user a chance to save a previous file if there was one. FileNew actually makes sure the DataFile property is cleared and sets the caption. (SetCaption, you may recall, is smart enough to just display the BaseCaption if the DataFile.Title property is empty.)

To test, run DlgSkel and choose File..Open to select an existing file. Watch the caption change, then choose File..New and watch it change back.

Saving the File�tc "Saving the File"�

tDlgAppWindow will not actually save application files, but it will provide the housekeeping associated with file saving operations. The cmFileSave, cmFileSaveAs, and FileSave methods will bring up the File Save common dialog if necessary; if the filename is changed, it’s reflected in the application’s caption bar.

We already have a ShouldSave method, located in the tDataFile class. This pops up a message box that asks the user whether the current file, which has been changed, should be saved. One thing we postponed when writing the ShouldSave method was what happens when the user wants to save a file that has been changed, but the file does not yet have a name.

The Common Dialogs provide a variant on the OpenFile dialog: a SaveFile dialog. (Actually, it’s the same dialog box with a different caption.) To use this dialog, we’ll add another method to the tDataFile class, ShouldSaveAs:

Function tDataFile.ShouldSaveAs

		(Window: pWindowsObject): Boolean;

	Var

		SaveFileName: tOpenFileName;

	Begin

	SaveFileName.lStructSize := SizeOf (SaveFileName);

	SaveFileName.hWndOwner := Window^.hWindow;

	SaveFileName.hInstance := hInstance;

	SaveFileName.lpstrFilter := Filters.CString;

	SaveFileName.lpstrCustomFilter := Nil;

	SaveFileName.nFilterIndex := FilterIndex;

	SaveFileName.lpstrFile := PathName.CString;

	SaveFileName.nMaxFile := PathName.GetMaxLength;

	SaveFileName.lpstrFileTitle := Title.CString;

	SaveFileName.nMaxFileTitle := Title.GetMaxLength;

	SaveFileName.lpstrInitialDir := Nil;

	SaveFileName.lpstrTitle := Nil;

	SaveFileName.Flags := ofn_NoChangeDir or

		ofn_PathMustExist or ofn_HideReadOnly;

	SaveFileName.lpstrDefExt := Extension.CString;

	ShouldSaveAs := GetSaveFileName (SaveFileName);

	PathName.RecalcLength;

	Title.RecalcLength;

	End;

The setup here is virtually identical to that of the ShouldOpen method, so we won’t rehash it. One thing worth noting, though, is that even though a user said the current file should be saved, the FileSave common dialog gives another chance to cancel the operation. This must be dealt with. Therefore, we’ll modify the ShouldSave method as follows:

Function tDataFile.ShouldSave

			

			

		If Result = id_No then

			Dirty := False;

		If Result = id_Yes then

 If PathName.Length = 0 then

				ShouldSave := ShouldSaveAs (Window)

			else

				ShouldSave := True

		else

			ShouldSave := False;

		Prompt.Done;

		End;

	End;

In tDlgAppWindow, just two new methods are needed to fully implement the new capabilities. First, the definitions:

Type

	pDlgAppWindow = ^tDlgAppWindow;

	tDlgAppWindow = Object (tDlgWindow)

			

			

		Procedure cmFileSave (Var Msg: tMessage);

			Virtual cm_First + cm_FileSave;

		Procedure cmFileSaveAs (Var Msg: tMessage);

			Virtual cm_First + cm_FileSaveAs;

		End;

Then, the methods themselves:

Procedure tDlgAppWindow.cmFileSave

		(Var Msg: tMessage);

	Begin

	If DataFile.PathName.Length = 0 then

		cmFileSaveAs (Msg)

	else

		FileSave;

	End;

Procedure tDlgAppWindow.cmFileSaveAs

		(Var Msg: tMessage);

	Begin

	If DataFile.ShouldSaveAs (@Self) then

		FileSave;

	End;

The cmFileSave method transfers control to the cmFileSaveAs method if the file has not yet been named. Otherwise, it invokes the FileSave method. The cmFileSaveAs method also invokes the FileSave method, as long as the user doesn’t change his or her mind and cancel out of the FileSave common dialog displayed by DataFile.ShouldSaveAs.

Adding FileClose and FileCopy Notification�tc "Adding FileClose and FileCopy Notification"�

Normally, Windows applications do not keep files open as they run; instead, they load the file into memory and write any changes back to disk when the user chooses the File..Save command. However, some applications require notification when a document is closed. Therefore, we’ll add a FileClose method.

With FileClose we’ll complete the quartet of tDlgAppWindow file man�agement methods.

The suggested use of these methods is as follows:

•	Application provides a pointer property for program data. During Init, this pointer is set to Nil.

•	FileNew creates an “empty” data object using New function, gives its address to the pointer.

•	FileOpen loads a previously stored data object using stream I/O and the Get method, gives its address to the pointer.

•	FileSave stores the contents of the data object using stream I/O.

•	FileClose disposes of the data object, sets the pointer to Nil.

•	FileCopy is invoked if the user chooses File..Save As; it gives the application an opportunity to make a duplicate of the file if necessary.

We won’t have a chance to actually use this scheme until Chapter 11, but it won’t hurt to have the framework in place. To make this addition to tDlgAppWindow, add the following method definitions:

Type

	pDlgAppWindow = ^tDlgAppWindow;

	tDlgAppWindow = Object (tDlgWindow)

			

			

		Procedure FileCopy; Virtual;

		Procedure FileClose; Virtual;

		End;

Modify tDlgAppWindow.Done by adding the call to FileClose before any properties have been disposed of:

Destructor tDlgAppWindow.Done;

	Begin

	FileClose;

	BaseCaption.Done;

			

			

	Inherited Done;

	End;

Invoke FileClose just before FileOpen in cmFileOpen:

Procedure tDlgAppWindow.cmFileOpen (var Msg: tMessage);

	Begin

	If Datafile.ShouldSave (@Self, @BaseCaption) then

		FileSave;

	If Datafile.ShouldOpen (@Self) then

		Begin

		FileClose;

		FileOpen;

		End;

	End;

Invoke FileClose just before FileNew in cmFileNew:

Procedure tDlgAppWindow.cmFileNew (var Msg: tMessage);

	Begin

	If Datafile.ShouldSave (@Self, @BaseCaption) then

		FileSave;

	FileClose;

	FileNew;

	End;

and in cmFileSaveAs invoke FileCopy before FileSave:

Procedure tDlgAppWindow.cmFileSaveAs (var Msg: tMessage);

	Begin

	If Datafile.ShouldSaveAs (@Self) then

		Begin

		FileCopy;

		FileSave;

		End;

	End;

The FileClose and FileCopy methods themselves are abstract methods that do nothing on their own:

Procedure tDlgAppWindow.FileClose;

	Begin

	End;

Procedure tDlgAppWindow.FileCopy;

	Begin

	End;

Getting the File Size�tc "Getting the File Size"�

Although applications don’t always need to know the size of a file, it is handy information to keep available. This method will provide the file size to any application that asks for it.

The trick to obtaining the size of a file in Borland Pascal is to use the FindFirst function from the WinDOS unit. This function accepts a wildcard specification and returns the first entry in a directory which matches. You are probably more familiar with this function as part of a pair: with FindFirst and FindNext, it is possible to obtain a list of all the files in a directory. But a wildcard doesn’t have to contain asterisks or question marks; most functions which accept a wildcard will also accept a specific filename:

Function tDataFile.GetSize: LongInt;

	Var

		FileRec: tSearchRec;

	Begin

	If Pathname.Length > 0 then

		Begin

		FindFirst (Pathname.CString, faAnyFile, FileRec);

		GetSize := FileRec.Size;

		End

	else

		GetSize := 0;

	End;

Both FindFirst and FindNext update the information in the tSearchRec record. In order to obtain the size of a file, you only have to pull it from FileRec.

Getting Your Application into the �Registration Database�tc "Getting Your Application into the �Registration Database"�

One of File Manager’s handiest features lets you double-click on the name of a data file to run the associated application and load the file into it. This is accomplished via records in the Registration Database.

In previous versions of Windows, the association between data file extensions and applications was maintained in the WIN.INI file’s [Extensions] section.

The ShellAPI unit now supplies the ShellExecute function to open data files based on their extensions; it looks first in the Registration Database, and only peers into WIN.INI if the application can’t be found there.

Most applications do not register themselves anywhere; they either rely on an installation program or the user to manually make the required entries via the File Manager File..Associate command. But I think that’s a mistake. Suppose you move the app from one subdirectory to another—ShellExecute will no longer be able to find it; you’ll have to �re-associate the extension(s) with the app in its new location. Okay; that’s not a lot of work for you. But do you really want to force this on your poor, innocent users?

Since registering an application requires very little in the way of overhead, I recommend your application register itself—every time it starts. That way, as long as it’s run once after it’s been moved, the associations will be kept intact.

We’re going to add a RegisterApp method to tDlgAppWindow and invoke it from tDlgAppWindow.Init. It will be a virtual method; a few applications won’t be dealing with files and can replace RegisterApp with a do-nothing method.

The Registration Database is accessed via key and subkey. There can be any number of subkeys, all arranged hierarchically. A typical entry looks like this:

wrifile=Write Document

	shell

		open

			command=write.exe %1

		print

			command=write.exe /p %1

.wri=wrifile

There are seven keys in this example: “\wrifile\shell\open\command”. Keys are added to the Registration Database via the RegCreateKey API call. If a key already exists, no harm is done. RegCreateKey returns a handle to the key; that handle is typically used later to set or obtain the value of that key. It can also be used to create a new subkey. A key doesn’t have to have a value.

We can implement management of the Registration Database in three new methods and an exported procedure:

Type

	pDlgAppWindow = ^tDlgAppWindow;

	tDlgAppWindow = Object (tDlgWindow)

			

			

		Procedure RegisterApp; Virtual;

		Procedure GetCommandFormat (var Command: tOString); Virtual;

		Procedure RegisterAppExtended (ClassKey: hKey); Virtual;

		End;

	Procedure RegCheckValue (Key: hKey; var Value: tOString);

Access to the Registration Database goes much more quickly if the key handles are all obtained first, the changes made, and the keys closed. The Database is not updated until the last key is closed. I’ve organized the code into three nested procedures. As usual we’ll look first at the method’s outer code and then inspect the inner level:

Procedure tDlgAppWindow.RegisterApp;

	Var

		ExtensionKey,

		ClassKey,

		CommandKey: hKey;

		ClassName: tOString;

			

			

	Begin

	ClassName.InitTextC (Application^.Name);

	OpenKeys;

	SetValues;

	CloseKeys;

	ClassName.Done;

	End;

We have finally found a use for the application name specified in the main program block: as an application class name. Users will not generally see the class name, so it doesn’t matter what language it’s in. The name must not contain blanks, backslashes, question marks, or asterisks. Stick to letters and digits and you’ll be safe.

The first nested procedure is OpenKeys:

Procedure OpenKeys;

	Var

		Extension: tOString;

	Begin

	Extension.InitTextP ('.');

	Extension.AppendR (str_Extension);

	RegCreateKey (HKEY_CLASSES_ROOT,

		Extension.CString, ExtensionKey);

	Extension.Done;

	RegCreateKey (HKEY_CLASSES_ROOT,

		ClassName.CString, ClassKey);

	RegCreateKey (ClassKey, 'shell\open\command', CommandKey);

	End;

The constant HKEY_CLASSES_ROOT is a key handle which is always open; it doesn’t count as an open key when the Registration database is waiting to apply your changes. RegCreateKey can create many keys at once if a multi-part subkey is given. The key handle that is returned applies only to the deepest-level subkey.

The SetValues procedure is where the new values are posted to the Database:

Procedure SetValues;

	Var

		Text: tOString;

	Begin

	RegCheckValue (ExtensionKey, ClassName);

	RegCheckValue (ClassKey, BaseCaption);

	Text.Init (128);

	GetCommandFormat (Text);

	RegCheckValue (CommandKey, Text);

	Text.Done;

	RegisterAppExtended (ClassKey);

	End;

If you look up the Registration Database functions in the online help, you see that RegCheckValue is not listed. That’s because I made it up. There’s no point in actually writing values to the Database if they don’t change anything; RegCheckValue will check the current value and update it only if necessary.

The GetCommandFormat method invoked in the nested SetValues function is another virtual function:

Procedure tDlgAppWindow.GetCommandFormat (var Command: tOString);

	Begin

	Command.SetMaxLength (128);

	Command.Length :=

		GetModuleFileName (hInstance,

			Command.CString, Command.GetBufferLength);

	Command.AppendP (' %1');

	End;

It places into Text the most common command format.

CloseKeys does just what it says:

Procedure CloseKeys;

	Begin

	RegCloseKey (ExtensionKey);

	RegCloseKey (ClassKey);

	RegCloseKey (CommandKey);

	End;

GetModuleFileName is a Windows API call which returns the fully-qualified name of the file represented by hInstance.

RegisterAppExtended gives an application the chance to register more commands—a Print command, perhaps. The supplied RegisterAppExtended is an abstract method:

Procedure tDlgAppWindow.RegisterAppExtended (ClassKey: hKey);

	Begin

	End;

Finally, the RegCheckValue procedure:

Procedure RegCheckValue (Key: hKey; var Value: tOString);

	Var

		Test: tOString;

		Length: LongInt;

	Begin

	Test.Init (128);

	Length := Test.GetBufferLength;

	RegQueryValue (Key, Nil, Test.CString, Length);

	Test.Length := Length;

	If not Test.Matches (Value) then

		RegSetValue (Key, Nil, reg_SZ, Value.CString, Value.Length);

	Test.Done;

	End;

As it turns out, the overhead in retrieving values from the Database is negligible, so this technique quickly pays for itself.

A quick addition to the SetupWindow method and we’re ready to �rock ‘n’ roll:

Procedure tDlgAppWindow.SetupWindow;

	Begin

			

			

	RegisterApp;

	End;

To test, open the trusty DLGSKEL.PAS module and make sure the string passed as the application name is a legal class name:

Begin

MyDlgApp.Init ('MyDlgApp');

MyDlgApp.Run;

MyDlgApp.Done;

End.

Run the program. The first time after DlgSkel appears, the cursor changes to an hour glass. This is the Registration Database being updated. This effect won’t be seen on subsequent runs, unless you move the application to another subdirectory.

Start the RegEdit applet. You should find an entry for MyDlgApp and the .SKL extension. If you choose File..Associate from the File Manager menu and enter “skl” in the Files with extension edit box, you also find an entry.

