OLE, or Object Linking and Embedding, is the logical culmination of multitasking windows, the Clipboard, and DDE. OLE is manifested in three forms. The server is an application that creates and maintains an “object” (not to be confused with an ObjectWindows object). A client is an application that can host OLE objects. Finally, the optional handler displays an OLE object when in its client host.

In this chapter, we’ll look at what goes into an OLE server. We’ll also build a standard application to produce simple date objects, implement a tDlgServer class, and then combine the two to make an OLE date server.

An Overview of OLE�tc "An Overview of OLE"\l�

The main premise of OLE is that users think in terms of objects, not applications. More of us say, “I want to watch Northern Exposure” than “I want the television set to be on.” Given a suite of OLE applications, you can work on a compound document that is, say, mostly formatted text, but also contains a spreadsheet and some artwork. Your word processor doesn’t need to be a spreadsheet and paint program as well; it invokes those applications as needed. The individual applications operate solely on the objects they are designed to deal with. As a developer, this means you can concentrate on the parts of your application that are unique. If a minor part of the application must accommodate formatted text, you don’t have to write yet another word processor; just support the embedding of objects from an existing word processor.

Understanding OLE Clients, Servers, and Handlers�tc "Understanding OLE Clients, Servers, and Handlers"\l�

Applications may be OLE servers, clients, or both. OLE object handlers are implemented as DLLs. This section explains where each is used.

The more powerful applications, like word processors, spreadsheets, presentations packages (like PowerPoint), and so on, are made more powerful by being OLE clients. An OLE client is an application that can contain compound documents—documents that consist of parts, not only from the primary application, but from other OLE server applications as well.

Since its inception, Windows has had the ability to mix objects. CardFile supports both text and pictures. Write also permits bitmaps from Paint to be inserted, via the Clipboard, into a formatted text document. But in earlier versions of Write, if you wanted to modify the bitmap, you had to change the original—which, hopefully, you saved—and then re-paste the modified painting.

With Windows 3.1 and OLE, Write has become an OLE client. You can still paste the bitmap (from Paint’s replacement, Paintbrush), but now you can edit that bitmap by simply double-clicking on it. Paintbrush then automatically loads the embedded bitmap and lets you make whatever changes you want; when you save them, the modifications are automatically applied to the bitmap image in the Write document.

What’s more, any OLE client is automatically a client to any OLE object. If you’ve installed the multimedia extensions to Windows 3.1, you can embed sounds or even full-motion video in your Write document as easily as bitmaps and spreadsheet cells.

An OLE server is simply an application that can produce objects suitable for embedding. Paintbrush’s bitmaps, Microsoft Draw’s metafiles, and Excel’s spreadsheets are obvious examples; but any application that saves data in files can probably benefit from being able to save that data as an embedded object. For example, how about an application that stores addresses and excels at printing envelopes? An address object could be embedded in a letter; when you double-click the address, the envelope prints. Better yet, if the address were linked rather than embedded and then changed, the new address would instantly be available to all documents linked to it.

The server application creates and (usually) edits the object, but the optional object handler DLL displays it. Without a handler, an object can only have the bitmap or metafile appearance the server gave it originally. With a handler, the appearance can change in real time. For example, a timer object without a handler would be frozen; a timer object with a handler could actually display the number of elapsed seconds since it was created.

An OLE server can also be a client. For example, a Word for Windows document, which might contain an embedded spreadsheet, can itself be embedded in another spreadsheet. However, this feature is rarely found outside of the truly major applications. The dialog-based applications derived from tDlgAppWindow may often be servers, but will seldom be clients.

One more point: Adding the ability to perform as an OLE server has surprisingly little impact on the workings of an existing application. Although the code to add this ability is complex, it sandwiches nicely between the tDlgAppWindow class and a derived tMainDlg class. This should make the decision of whether a given app should be an OLE server an easier one to make.

Structure of an OLE Server�tc "Structure of an OLE Server"\l�

In this book, I’ve tried to spend more time making a technique work than explaining how it works. But OLE is so complex that it will be impossible to debug any problems if you don’t have some understanding of its mechanics.

Understanding the OLE Hierarchy�tc "Understanding the OLE Hierarchy"\l�

Like so many aspects of Windows, OLE uses a three-tiered hierarchy of servers, documents, and objects. Understanding the relationship of each to the other is critical to a successful OLE implementation.

According to the OLE protocol, a given application can actually supply more than one OLE service. To me, this doesn’t seem like a good idea; Windows integrates applications so well that it seems wasteful to duplicate that effort by jamming two services into a single application. Therefore, the tDlgServer class we’ll derive from tDlgAppWindow in this chapter will only support a single service.

As in DDE, a server must have a name. Generally, it’s not a good idea for an application to support both OLE and DDE, since OLE is based on DDE; trying to mix the two can sometimes cause problems. If an application supports both, its OLE server name must not be the same as the application’s .EXE file; if it is, DDE won’t be able to tell its messages apart from OLE’s.

Each server may support any number of open documents. A document in this context is an entity containing one or more objects. An object is a component of a document, such as a cell or range of cells in a spreadsheet, which can be selected and pasted into a client document, or which has been pasted from an OLE server. Each bookmark in a Word for Windows document is an object. An OLE object is created when it is copied or cut to the Clipboard. In a more abstract sense, any element of a document that can be selected and copied is an object. For our purposes you can think of this element as a file; generally a file is a document. tDlgAppWindow-based applications will only open one document at a time, but an MDI application can open several at once.

Naturally, a given server should create just one kind of object, or at least related kinds of objects. The OLE server we’re going to build creates “date” objects, objects that represent a given calendar date. It would not be in keeping with Windows’ modular nature for the Date application to also create, say, geographical map objects.

Understanding Linked and Embedded Objects�tc "Understanding Linked and Embedded Objects"\l�

OLE stands for “Object Linking and Embedding.” But it might be more accurate to replace “and” with “or” because most objects are not linked and embedded at the same time. Here’s the �difference.

A linked object exists as a file on some storage medium, whether hard or floppy disk, CD-ROM, or something else. When an object is linked, the object is not changed in any way. Rather, the client application—the one to which the object has been linked—stores the information describing the link in a way OLE can understand. This information includes the name of the server, and where to find the object handler if there is one. The advantage to linking (rather than embedding) is that one object can be linked to many different documents, or to many different places in one document. If the single object is changed in some way, the change propagates to every document to which the object is linked. The disadvantage is that if you delete or rename the file, the links from every document will be broken.

There is nothing special about the file in which an object resides. That’s why it’s possible to create and link—or embed—packages. Packages are OLE objects composed of files from non-OLE applications. The magic resides in the application that created the object—the server—and, optionally, the object handling DLL.

An embedded object is a physical part of the document in which it is embedded. The object is unique: Although it can be copied, changes to the copy will not affect the original, and vice versa. The advantage to embedding an object is that the document is all of a piece; you don’t have to keep track of associated files. A disadvantage is that a large embedded object will swell a document file to unmanageable size.

Designing an OLE Server�tc "Designing an OLE Server"\l�

Microsoft has created some OLE-only applications (for instance, Microsoft Draw and Microsoft Equation Editor), but it’s a forced effort. It would add considerably to the value of these programs if they could save objects as files. Not only would they be useful in stand-alone mode, but an object saved in a file can be linked, not just embedded.

I point this out so you won’t fall prey to the same kind of short-sightedness. Sure, you can create a server that deals only with embedded objects, but why should you? The added ability to work with files is something you would take for granted in a standard (non-OLE) application; so why hesitate to include it, especially when the functionality is already supplied by tDlgAppWindow?

The fact is, an OLE server is just a regular, file-based application—with something extra. What’s more, the best OLE applications start out as the best standard applications. In the next few pages, we’ll demonstrate this by building a simple, non-OLE application and then adding OLE to it.

Designing the Date Application�tc "Designing the Date Application"\l�

This chapter’s application is a simple one that presents a date in the form of a calendar. The date can be saved in a file, then reloaded. While such an applet has an admittedly narrow appeal, it will become more valuable when OLE capability has been added.

By now, writing a straightforward application derived from tDlgAppWindow should be the kind of task you can pull off easily, so we won’t spend a great deal of time on the details. You know how to create a new project—in this case, CHAP11. As usual, we’ll start with the resource file. The main dialog resembles a standard monthly calendar. We’re going to use existing controls for all the pieces. We’ll put the month names in a drop-down list combo box. The year will appear in a static window, with a tiny scrollbar to allow the year to be changed (so we won’t have to deal with validating user input).

The days of the month will be represented by pushbuttons. Since there are a different number of days in each month, we won’t include the buttons in the dialog template. As a side benefit, then, you’ll see an example of how to dynamically add controls to a dialog box. We’ll include a gray panel on which the buttons will appear. The template for the Date dialog is shown in Figure 11.1.

�EMBED MSPowerPoint \s * mergeformat���

Figure 11.1: The Date dialog template, with control classes and ID numbers identified.

Change the stringtable so the default extension for date files is .DT. You also need to add strings for each of the months of the year, descriptions of the controls for the online help, and a couple of strings for OLE’s use:

STRINGTABLE LOADONCALL MOVEABLE DISCARDABLE

BEGIN

	1, "January"

	2, "February"

	3, "March"

	4, "April"

	5, "May"

	6, "June"

	7, "July"

	8, "August"

	9, "September"

	10, "October"

	11, "November"

	12, "December"

	500, "Date Files|*.dt|All Files(*.*)|*.*|"

	501, "dt"

	502, "Do you want to save the changes you've made to "

	503, "(Untitled)"

	504, "You cannot drag more than one file to this application at a �	 time."

	505, "You cannot drag a subdirectory to this application."

	1001, "Select the desired month from the dropdown list."

	1003, "Use the up/down arrows, or page up/down buttons, to select a �	 year."

	1005, "Push the button representing the desired day."

	11001, "&Edit"

	11002, "Update"

	11003, " in "

	11004, "You cannot update the document until this application is �	 closed."

END

The Edit as Text menu should read as follows:

MAIN MENU PRELOAD MOVEABLE DISCARDABLE

BEGIN

	POPUP "&File"

	BEGIN

		MENUITEM "&New", 101

		MENUITEM "&Open...", 102

		MENUITEM "&Save", 103

		MENUITEM "Save &as...", 104

		MENUITEM SEPARATOR

		MENUITEM "E&xit", 24340

	END

	POPUP "&Edit"

	BEGIN

		MENUITEM "&Paste\tShift+Ins", 203

		MENUITEM SEPARATOR

		MENUITEM "&Goto Today", 210

	END

	POPUP "&Help"

	BEGIN

		MENUITEM "&Index\tF1", 901

		MENUITEM SEPARATOR

		MENUITEM "&About...", 999

	END

END

The accelerator list should read as follows:

MAIN ACCELERATORS PRELOAD MOVEABLE

BEGIN

	VK_BACK, 205, VIRTKEY, ALT

	VK_INSERT, 202, VIRTKEY, CONTROL

	VK_INSERT, 203, VIRTKEY, SHIFT

	VK_HOME, 210, VIRTKEY, CONTROL

	VK_F1, 901, VIRTKEY

	VK_F1, 998, VIRTKEY, CONTROL

	VK_F1, 997, VIRTKEY, SHIFT

END

The icon I designed for Date is shown in Figure 11.2.

� INCLUDEPICTURE F:\\INSIDER\\FINAL\\FIG11-02.TIF * MERGEFORMAT ���

Figure 11.2: The Date application's icon.

The basic Date application is not too big to implement in one module, but in keeping with good modular design, we’re going to create a DateData unit:

Unit DateData;

	(***)

						Interface

	(***)

	Uses

		Objects,

		WinDos;

	Type

		pData = ^tData;

		tData = Object (tObject)

			Version: Byte;

			Year, Month, Day: Word;

			Constructor Init;

			Constructor Load (var S: tStream);

			Procedure Store (var S: tStream);

			Procedure SetToday;

			End;

	(***)

					Implementation

	(***)

	Constructor tData.Init;

		Begin

		Inherited Init;

		Version := 1;

		SetToday;

		End;

	Constructor tData.Load (var S: tStream);

		Begin

		S.Read (Version, SizeOf (Version));

		S.Read (Year, SizeOf (Year));

		S.Read (Month, SizeOf (Month));

		S.Read (Day, SizeOf (Day));

		End;

	Procedure tData.Store (var S: tStream);

		Begin

		S.Write (Version, SizeOf (Version));

		S.Write (Year, SizeOf (Year));

		S.Write (Month, SizeOf (Month));

		S.Write (Day, SizeOf (Day));

		End;

	Procedure tData.SetToday;

		Var

			DOW: Word;

		Begin

		GetDate (Year, Month, Day, DOW);

		End;

	Const

		rData: tStreamRec =

			(

			ObjType: 11001;

			VmtLink: Ofs (TypeOf (tData)^);

			Load: @tData.Load;

			Store: @tData.Store

);

	Begin

	RegisterType (rData);

	End.

Future versions of Date might modify the Load constructor to reformat data from older versions of Date to whatever new format is used.

The main program module, DATE.PAS, starts off in the usual way, with constants for each of the main dialog controls and any menu commands not inherited from tDlgAppWindow:

Program Date;

	{$R DATE.res}

	Uses

		Objects,

		OWindows,

		ODialogs,

		WinProcs,

		WinTypes,

		DlgApp,

		OString,

		Controls,

		WinDOS,

		DateData;

	Const

		id_Month = 1001;

		id_Year = 1002;

		id_YearScroll = 1003;

		id_DayRect = 1004;

		id_DayFirst = 1005;

	Const

		cm_EditGotoToday = 210;

The type definitions come next. In addition to tMainDlg, there are also derived classes for most of the controls on the dialog:

Type

	pMonthCombo = ^tMonthCombo;

	tMonthCombo = Object (tXCombobox)

		Procedure SetupWindow; Virtual;

		Procedure Changed (var Msg: tMessage);

			Virtual nf_First + cbn_SelChange;

		End;

Type

	pYearScroll = ^tYearScroll;

	tYearScroll = Object (tXScrollbar)

		Procedure SetupWindow; Virtual;

		Procedure SetPosition (Year: Integer); Virtual;

		End;

Type

	pDayButton = ^tDayButton;

	tDayButton = Object (tXButton)

		Procedure SetupWindow; Virtual;

		Procedure Clicked (var Msg: tMessage);

			Virtual nf_First + bn_Clicked;

		Procedure wmSetFocus (var Msg: tMessage);

			Virtual wm_First + wm_SetFocus;

		Procedure wmNcHitTest (var Msg: tMessage);

			Virtual wm_First + wm_NcHitTest;

		End;

Type

	pMainDlg = ^tMainDlg;

	tMainDlg = Object (tDlgAppWindow)

		Month: tMonthCombo;

		Year: tXStatic;

		YearScroll: tYearScroll;

		DayRect: tStatic;

		Day: Array [1..31] of tDayButton;

		DayButtonFont: hFont;

		Data: pData;

		Constructor Init;

		Destructor Done; Virtual;

		Function GetDayButtonFont: hFont;

		Procedure FileNew; Virtual;

		Procedure FileOpen; Virtual;

		Procedure FileSave; Virtual;

		Procedure FileClose; Virtual;

		Procedure cmEditGotoToday (var Msg: tMessage);

			Virtual cm_First + cm_EditGotoToday;

		Procedure UpdateDisplay;

		End;

Type

	pDlgApp = ^tDlgApp;

	tDlgApp = Object (tApplication)

		Procedure InitInstance; Virtual;

		Procedure InitMainWindow; Virtual;

		Function ProcessAppMsg (var Message: tMsg): Boolean; virtual;

		End;

The tMonthCombo class is derived from tXCombobox. The overriding methods load the set of months’ names during control setup, and respond to the user changing the month selection:

Procedure tMonthCombo.SetupWindow;

	Var

		m: Word;

		aText: tOString;

	Begin

	Inherited SetupWindow;

	aText.Init (12);

	For m := 1 to 12 do

		Begin

		aText.SetTextR (m);

		AddString (aText.CString);

		End;

	aText.Done;

	End;

Procedure tMonthCombo.Changed (var Msg: tMessage);

	Begin

	pMainDlg(Parent)^.Data^.Month := GetSelIndex + 1;

	pMainDlg(Parent)^.UpdateDisplay;

	pMainDlg(Parent)^.Datafile.Dirty := True;

	End;

Notice that the Changed method casts the Parent property to a pointer to tMainDlg in order to retrieve the new month selection, invoke the UpdateDisplay method, and set the Dirty flag.

Likewise, the tYearScroll methods deal with setup and user response:

Procedure tYearScroll.SetupWindow;

	Begin

	Inherited SetupWindow;

	SetRange (1980, 2080);

	End;

Procedure tYearScroll.SetPosition (Year: Integer);

	Begin

	Inherited SetPosition (Year);

	pMainDlg(Parent)^.Data^.Year := Year;

	pMainDlg(Parent)^.UpdateDisplay;

	pMainDlg(Parent)^.Datafile.Dirty := True;

	End;

tScrollbar Bug in the Runtime Library

According to the online help, the following methods of the tScrollbar class should be virtual:

	GetRange	GetPosition	SetRange�	SetPosition	DeltaPos

This makes sense; these methods are called internally and can’t be meaningfully overridden unless they are virtual methods. Unfortunately, somebody neglected to actually add the virtual keyword to the method definitions.

You can fix this if you’ve installed the Runtime Library code. Open the ODialogs unit, locate the Type definition for tScrollbar, add the virtual keyword to each of the offending method definitions, and compile. Don’t forget to move the resulting ODIALOGS.TPW into the \BP\UNITS directory (you may have named yours differently).

If you don’t have the Runtime Library, you’ll have to contact Borland for a replacement ODIALOGS.TPW. And, unfortunately, there’s no way to implement the program in this chapter without it.

While the year range specified in SetupWindow is admittedly narrow (only one century), we’ll be using the DOS date facility, which doesn’t understand any date earlier than January 1980.

The tDayButton methods add support for online help to window setup and user interaction:

Procedure tDayButton.SetupWindow;

	Begin

	Inherited SetupWindow;

	SendMessage (hWindow, wm_SetFont,

		pMainDlg(Parent)^.GetDayButtonFont, 0);

	End;

Procedure tDayButton.Clicked (var Msg: tMessage);

	Begin

	pMainDlg(Parent)^.Day[pMainDlg(Parent)^.Data^.Day].Raise;

	Depress;

	pMainDlg(Parent)^.Data^.Day := Attr.ID - id_DayFirst;

	pMainDlg(Parent)^.Datafile.Dirty := True;

	End;

Procedure tDayButton.wmSetFocus (var Msg: tMessage);

	Begin

	Help^.SetTextR (id_DayFirst);

	DefWndProc (Msg);

	End;

Procedure tDayButton.wmNcHitTest (var Msg: tMessage);

	Begin

	DefWndProc (Msg);

	If (Msg.Result = htClient) and Help^.HelpMode then

		Help^.SetTextR (id_DayFirst);

	End;

You’ve seen the wm_SetFont message used before, when changing the status bar font for the tHelp class. The new wmSetFocus and wmNcHitTest methods save us from having to repeat the descriptive string 31 times in the stringtable, by supplying a constant to Help^.SetTextR instead of the control ID.

The tMainDlg constructor, in addition to initializing the resource controls, creates 31 brand-new pushbuttons:

Constructor tMainDlg.Init;

	Var

		d: Word;

		n: tOString;

	Begin

	Inherited Init;

	Month.InitResource (@Self, id_Month, 12);

	Month.Help := @Help;

	Year.InitResource (@Self, id_Year, 4);

	YearScroll.InitResource (@Self, id_YearScroll);

	YearScroll.Help := @Help;

	DayRect.InitResource (@Self, id_DayRect, 24);

	n.Init (2);

	For d := 1 to 31 do

		Begin

		n.SetTextN (d);

		Day[d].Init (@Self,

			id_DayFirst + d, n.CString, 0, 0, 0, 0, False);

		Day[d].Help := @Help;

		End;

	n.Done;

	DayButtonFont := 0;

	Data := Nil;

	End;

Remember, the pushbuttons that will represent the days of the month were not included as part of the main dialog template, so we don’t invoke their InitResource constructor. Instead, the Init constructor actually creates the buttons from scratch. By giving them all the same coordinates and sizes of zero, we ensure that Windows will not waste time trying to place them on screen. When we’re ready, we’ll tell the buttons where to go.

The Data property is initialized to Nil signifying that no file object has yet been created or loaded. The Data property will be created by the FileNew method, or loaded by FileOpen; so it stands to reason it should be disposed of by FileClose:

Procedure tMainDlg.FileClose;

	Begin

	Inherited FileClose;

	If Assigned (Data) then

		Begin

		Day[Data^.Day].Raise;

		Dispose (Data, Done);

		Data := Nil;

		End;

	End;

FileClose is automatically called by the inherited Done method, so we don’t have to worry about Data there, either, except in one respect. Before disposing of the Data property itself, FileClose raises the currently depressed Day button. That means we must invoke FileClose specifically at the start of the Done. Since it places a Nil in the Data pointer it won’t do any harm when it’s called again from the ancestor Done:

Destructor tMainDlg.Done;

	Var

		d: Word;

	Begin

	FileClose;

	Month.Done;

	Year.Done;

	YearScroll.Done;

	DayRect.Done;

	For d := 1 to 31 do

		Day[d].Done;

	DeleteObject (DayButtonFont);

	Inherited Done;

	End;

Note the DeleteObject call to get rid of DayButtonFont. That was not created in the Init constructor, because our method of creating modified fonts requires a valid window from which to get the original font. That happens in GetDayButtonFont, invoked by tDayButton.SetupWindow:

Function tMainDlg.GetDayButtonFont: hFont;

	Var

		OldFont: hFont;

		LogFont: tLogFont;

	Begin

	If DayButtonFont = 0 then

		Begin

		OldFont := hFont (SendMessage (hWindow, wm_GetFont, 0, 0));

		GetObject (OldFont, SizeOf (LogFont), @LogFont);

		LogFont.lfWeight := fw_Regular;

		DayButtonFont := CreateFontIndirect (LogFont);

		End;

	GetDayButtonFont := DayButtonFont;

	End;

We only want to create one copy of this font; if we let each of the 31 buttons create its own, we would seriously impact Windows’ supply of global descriptors, not to mention memory. By initializing DayButtonFont with zero and then testing for that value, we can ensure that we create only one copy of the font to be shared by all the tDayButton objects.

You may recall that tDlgAppWindow, in executing its own SetupWindow method, automatically invokes either FileOpen or FileNew, depending on whether a filename is supplied on the command line. These methods can also be invoked via menu commands, and FileOpen can be triggered by a drag-and-drop operation.

FileNew simply allocates a new Data object, which you’ll recall is initialized to today’s date:

Procedure tMainDlg.FileNew;

	Begin

	Inherited FileNew;

	Data := New (pData, Init);

	UpdateDisplay;

	End;

 If there was a previous Data object, it is first disposed of. As with any change to the calendar data, UpdateDisplay is invoked to make sure the visual interface reflects the internal data.

Most of the units we’ve created include Load and Store methods to support streaming. Finally, in FileOpen, you’ll see streaming from the business end, showing how a streamed object is brought back into the application:

Procedure tMainDlg.FileOpen;

	Var

		S: tDosStream;

	Begin

	Inherited FileOpen;

	S.Init (Datafile.Pathname.CString, stOpenRead);

	Data := pData (S.Get);

	S.Done;

	UpdateDisplay;

	End;

S is the stream object that is passed the pathname from Datafile; a single Get invocation is all that’s required to load the Data object from disk. If the Data object had been much larger, we would have made S a tBufStream object instead; such an object adds disk buffering to the abilities of tDosStream.

The Data object was originally Put to disk by the FileSave method:

Procedure tMainDlg.FileSave;

	Var

		S: tDosStream;

	Begin

	Inherited FileSave;

	S.Init (Datafile.Pathname.CString, stCreate);

	S.Put (Data);

	S.Done;

	End;

The cmEditGotoToday method simply resets the Data object by invoking its SetToday method:

Procedure tMainDlg.cmEditGotoToday (var Msg: tMessage);

	Begin

	Day[Data^.Day].Raise;

	Data^.SetToday;

	UpdateDisplay;

	Datafile.Dirty := True;

	End;

tMainDlg’s last method is also its most ambitious: All the components are brought together here to actually display the date in Data on screen. It has three nested procedures, which we’ll look at shortly. First, let’s check out the main code:

Procedure tMainDlg.UpdateDisplay;

	Var

		DayOfWeek,

		d: Word;

		Top,

		Left,

		Height,

		Width,

		Margin: Integer;

	Const

		DaysInMonth: Array [1..12] of Word =

			(31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31);

		

		

	Begin

	DrawYear;

	Month.SetSelIndex (Data^.Month-1);

	Day[Data^.Day].Depress;

	DayOfWeek := CalcFirstDayOfMonth;

	Width := DayRect.Attr.W div 7;

	Height := DayRect.Attr.H div WeeksInMonth (DayOfWeek);

	Margin := (DayRect.Attr.W - (Width * 7)) div 2;

	Left := DayRect.Attr.X + Margin + (Width * DayOfWeek);

	Top := DayRect.Attr.Y;

	For d := (DaysInMonth[Data^.Month]+1) to 31 do

		If Day[d].hWindow <> 0 then

			ShowWindow (Day[d].hWindow, sw_Hide);

	For d := 1 to DaysInMonth[Data^.Month] do

		If Day[d].hWindow <> 0 then

			Begin

			MoveWindow (Day[d].hWindow,

				Left, Top, Width, Height, False);

			ShowWindow (Day[d].hWindow, sw_Show);

			Inc (DayOfWeek);

			If DayOfWeek > 6 then

				Begin

				DayOfWeek := 0;

				Left := DayRect.Attr.X + Margin;

				Top := Top + Height;

				End

			else

				Left := Left + Width;

			End;

	InvalidateRect (hWindow, Nil, True);

	UpdateWindow (hWindow);

	End;

This code appears in five segments, separated by blank lines. In the first segment, the year is drawn by a nested procedure; the appropriate month name is selected from the Month combo box, and the DayButton corresponding to the chosen day is visually pressed.

The second segment has to do with calculating starting values for the first day of the month (to tell under which day of the week the first DayButton should be moved), and the width and height of each button, based on the size of DayRect. CalcFirstDayOfMonth and WeeksInMonth are nested functions. Margin is calculated in case the width of DayRect cannot be evenly divided by seven. These calculations make use of the Attr.X and Attr.Y properties which are inherited by every descendent of tWindowsObject.

The Attr.X and Attr.Y Fields Are Never Correct for a Control That Was Constructed Using InitResource

This is a bug in the Runtime Library. If you’ve installed the Runtime Library source code, you can fix this bug yourself.

The problem is that, for objects constructed using InitResource, the Attr.Style field is never set, so UpdateWindowRect never converts the values from screen to client coordinates.

All you have to do is make the following change to tWindow.Setup in the OWINDOWS unit (the added code is circled):

Procedure tWindow.SetupWindow;

	Begin

	Inherited SetupWindow;

	If IsFlagSet(wb_MDIChild) then

		SetFocus(HWindow);

	If IsFlagSet(wb_FromResource) then

		Attr.Style := GetWindowLong (hWindow, gwl_Style);

	If Scroller <> nil then

		Scroller^.SetSBarRange;

	UpdateWindowRect;

	End;

Then compile and move OWINDOWS.TPW to the \BP\UNITS directory (you might have given the directory another name). With this fix in place everything seems to work properly.

If you don’t have the Runtime Library source code you can still apply the fix by adding a SetupWindow method with the circled lines to every control in the Controls unit we created in Chapter 7. Don’t forget to invoke the inherited SetupWindow as well:

Procedure tXStatic.SetupWindow;

	Begin

	Inherited SetupWindow;

	If IsFlagSet(wb_FromResource) then

		Attr.Style := GetWindowLong (hWindow, gwl_Style);

	UpdateWindowRect;

	End;

In the next section, the unused DayButtons at the end of the array are hidden.

Next, the buttons that are to appear are moved into place and shown. The calculations place DayButton[1] in the first row in the column for the appropriate day of the week; additional buttons are added to its right with new rows generated as needed.

Finally, the dialog as a whole is invalidated and updated.

Now we’ll look at the nested procedure and functions. The DrawYear subprocedure has the dual job of sending the appropriate text to the Year static control and setting the proper thumb position of the YearScroll. Even though we can’t see the thumb (the scrollbar is too short), this is required for the control’s proper operation:

Procedure DrawYear;

	Var

		aText: tOString;

	Begin

	aText.Init (4);

	aText.SetTextN (Data^.Year);

	Year.SetText (aText);

	aText.Done;

	SetScrollPos (YearScroll.hWindow, sb_Ctl, Data^.Year, True);

	End;

The reason we use the Windows API call SetScrollPos instead of simply invoking YearScroll.SetPosition is that we overrode SetPosition—and it invokes UpdateDisplay. If we called it here, we would find ourselves in an endless recursive loop.

CalcFirstDayOfMonth is where the magic occurs. In the absence of a sophisticated date function library, we needed a quick yet effective way to figure out on what day of the week a given month begins. DOS has such a function built into it, but you have to set the system clock to the desired date to use it:

Function CalcFirstDayOfMonth: Word;

	Var

		Y, M, D: Word;

		Save: Record

			Y, M, D: Word;

			End;

		DayOfWeek: Word;

	Begin

	GetDate (Save.Y, Save.M, Save.D, DayOfWeek);

	SetDate (Data^.Year, Data^.Month, 1);

	GetDate (Y, M, D, DayOfWeek);

	SetDate (Save.Y, Save.M, Save.D);

	CalcFirstDayOfMonth := DayOfWeek;

	End;

In this function, we retrieve the current date from the system clock, set it to the first of the month and year in question, and use the GetDate function a second time to obtain the DayOfWeek. Then, all we have to do is reset the clock to the saved date.

But what if this code happens to execute at that brief moment when the system clock switches over to tomorrow? If you are worried about this, you could start the function out by invoking GetTime in a loop that repeats until the time is not 11:59:59. Should the routine be invoked in that one second, the system would freeze until the second had passed.

The final nested function simply calculates the number of weeks in the month, which is the same as the number of rows required for DayButtons:

Function WeeksInMonth (FirstDayOfMonth: Word): Integer;

	Var

		TotalDays: Integer;

		TotalWeeks: Integer;

	Begin

	TotalDays := FirstDayOfMonth + DaysInMonth[Data^.Month];

	TotalWeeks := TotalDays div 7;

	If (TotalWeeks * 7) <> TotalDays then

		Inc (TotalWeeks);

	WeeksInMonth := TotalWeeks;

	End;

That concludes the UpdateDisplay method. The remainder of the module belongs to the tDlgApp class and the instantiated MyDlgApp object:

Procedure tDlgApp.InitInstance;

	Begin

	Inherited InitInstance;

	hAccTable := LoadAccelerators (hInstance, 'MAIN');

	End;

Procedure tDlgApp.InitMainWindow;

	Begin

	MainWindow := New (pMainDlg, Init);

	End;

Function tDlgApp.ProcessAppMsg (var Message: tMsg): Boolean;

	Begin

	ProcessAppMsg :=

		ProcessAccels (Message) or

		ProcessDlgMsg (Message);

	End;

Var

	MyDlgApp: tDlgApp;

Begin

MyDlgApp.Init ('Date');

MyDlgApp.Run;

MyDlgApp.Done;

End.

Running this app, you should be able to create a date file and save it; re-open it via the File..Open command, start Date with the filename on the command line or by dragging the filename from File Manager onto a running copy of Date.

Adding Bitmap and Metafile Clipboard Formats�tc "Adding Bitmap and Metafile Clipboard Formats"\l�

We included abstract bitmap and metafile Clipboard formats in Chapter 9, with the understanding that an application must derive new classes from them if they are to be used. In this section, we’ll show you how the Date applet can place bitmaps and metafiles on the Clipboard—which will come in handy when we add OLE.

To add metafile and bitmap Clipboard capabilities to Date, first define a Draw method for tMainDlg, then add the two derivative Clipboard format classes:

Type

	pMainDlg = ^tMainDlg;

	tMainDlg = Object (tDlgServer)

			

			

		Procedure Draw (DC: hDC; Width, Height: Integer);

		End;

Type

	pBitmapFormat = ^tBitmapFormat;

	tBitmapFormat = Object (tClipboardBitmap)

		Procedure RenderDrawing

			(Parent: pWindowsObject; DC: hDC); Virtual;

		End;

Type

	pMetafileFormat = ^tMetafileFormat;

	tMetafileFormat = Object (tClipboardMetafile)

		Procedure RenderDrawing

			(Parent: pWindowsObject; DC: hDC); Virtual;

		End;

For each format, only the abstract RenderDrawing method must be overridden, because tDlgAppWindow applications are not designed to receive graphical data (what would they do with it?). Next, create instances of these classes, then insert the objects into the Clipboard property:

Constructor tMainDlg.Init;

	Var

		d: Word;

		n: tOString;

	Begin

	Inherited Init;

			

			

	Clipboard.Insert (New (pMetafileFormat, Init (250, 300)));

	Clipboard.Insert (New (pBitmapFormat, Init (250, 300)));

	End;

Implement the RenderDrawing methods:

Procedure tMetafileFormat.RenderDrawing

		(Parent: pWindowsObject; DC: hDC);

	Begin

	pMainDlg (Parent)^.Draw (DC, Bounds.Width, Bounds.Height);

	End;

Procedure tBitmapFormat.RenderDrawing

		(Parent: pWindowsObject; DC: hDC);

	Begin

	pMainDlg (Parent)^.Draw (DC, Bounds.Width, Bounds.Height);

	End;

Recall that the ClpBoard unit’s scheme was to provide identical-looking device contexts to the RenderDrawing methods so they could be implemented identically. The tMainDlg.Draw method is simply handed a device context and expected to run with it.

Before looking at Draw itself, you may find it helpful to look at the example of its output in Figure 11.3.

� INCLUDEPICTURE F:\\INSIDER\\FINAL\\FIG11-03.TIF * MERGEFORMAT ���

Figure 11.3: A date with the Draw method.

The Draw method divides its work into five nested subroutines, one each for the graphical elements, font initialization, the month name, the day, and the year. Here’s the framework of the method and its main block:

Procedure tMainDlg.Draw (DC: HDC; Width, Height: Integer);

	Const

		Offset = 5;

	Var

		XMargin,

		YMargin: Integer;

		LogFont: tLogFont;

			

			

	Begin

	Dec (Width, Offset);

	Dec (Height, Offset);

	XMargin := Width div 6;

	YMargin := Height div 5;

	DrawFrame;

	InitializeLogFont;

	DrawMonth;

	DrawDay;

	DrawYear;

	End;

All the measurements were worked out by trial and error, until I got an image I liked; so feel free to experiment. The DrawFrame procedure is responsible for the graphical elements of the image:

Procedure DrawFrame;

	Var

		OldBrush: hBrush;

		OldPen: hPen;

	Begin

	OldPen := SelectObject (DC, GetStockObject (Black_Pen));

	OldBrush := SelectObject(DC, GetStockObject (Black_Brush));

	Rectangle (DC, Offset, Offset, Width+Offset, Height+Offset);

	SelectObject(DC, CreateSolidBrush (RGB (255, 255, 191)));

	Rectangle (DC, 0, 0, Width, Height);

	SelectObject (DC, CreatePen (ps_Solid, 6, RGB (0, 0, 127)));

	MoveTo (DC, XMargin, YMargin);

	LineTo (DC, Width - XMargin, YMargin);

	MoveTo (DC, XMargin, Height - YMargin);

	LineTo (DC, Width - XMargin, Height - YMargin);

	DeleteObject (SelectObject (DC, OldBrush));

	DeleteObject (SelectObject (DC, OldPen));

	End;

Even if you’ve never worked with Windows graphics before, you should be able to follow the flow of rectangles and lines. The main thing to remember is that any GDI objects you select into a device context must be replaced by the original object before you exit the procedure. Also, you must delete any GDI object you create (pens and brushes). GetStockObject does not create a GDI object, so you must not try to delete objects obtained in that manner.

DrawMonth, DrawDay, and DrawYear each requires a GDI font object. Fonts are usually created by describing them in a logical font structure of tLogFont type. Only three of the fields contain information we’ll want to change for each of the three fonts we want; we set the rest in the nested InitializeLogFont procedure:

Procedure InitializeLogFont;

	Begin

	With LogFont do

		Begin

		lfWidth := 0;

		lfEscapement := 0;

		lfOrientation := 0;

		lfItalic := Word (False);

		lfUnderline := Word (False);

		lfStrikeout := Word (False);

		lfCharSet := 0;

		lfOutPrecision := 7;

		lfClipPrecision := clip_Default_Precis;

		lfQuality := Proof_Quality;

		lfPitchAndFamily := Variable_Pitch or ff_DontCare;

		End;

	End;

With the LogFont structure initialized, the month name is drawn. We need to use the StrCopy function from the Strings unit to place the font name into the LogFont structure, so be sure to add Strings to the Uses clause. Then you’re ready to place text on the device context:

Procedure DrawMonth;

	Var

		OldFont: hFont;

		OldAlign: Word;

		OldMode: Integer;

		OldColor: tColorRef;

		N: tOString;

	Begin

	With LogFont do

		Begin

		lfHeight := -26;

		lfWeight := fw_Bold;

		StrCopy (lfFaceName, 'Arial');

		End;

	OldFont := SelectObject (DC, CreateFontIndirect (LogFont));

	OldAlign := SetTextAlign (DC, ta_Center);

	OldMode := SetBkMode (DC, Transparent);

	OldColor := SetTextColor (DC, RGB (127, 0, 0));

	N.Init (10);

	N.SetTextR (Data^.Month);

	TextOut (DC, Width div 2, YMargin div 4, N.CString, N.Length);

	N.Done;

	DeleteObject (SelectObject (DC, OldFont));

	SetTextAlign (DC, OldAlign);

	SetBkMode (DC, OldMode);

	SetTextColor (DC, OldColor);

	End;

The text for the month name comes from the application’s resource pool, the same place the strings for the month name combo box came from. The day, on the other hand, is simply presented as a number:

Procedure DrawDay;

	Var

		OldFont: hFont;

		OldAlign: Word;

		OldMode: Integer;

		OldColor: tColorRef;

		N: tOString;

	Begin

	With LogFont do

		Begin

		lfHeight := -160;

		lfWeight := fw_Bold;

		StrCopy (lfFaceName, 'TimesNewRoman');

		End;

	OldFont := SelectObject (DC, CreateFontIndirect (LogFont));

	OldAlign := SetTextAlign (DC, ta_Center or ta_Bottom);

	OldMode := SetBkMode (DC, Transparent);

	OldColor := SetTextColor (DC, RGB (0, 0, 0));

	N.Init (10);

	N.SetTextN (Data^.Day);

	TextOut (DC, Width div 2, Height - YMargin,

		N.CString, N.Length);

	N.Done;

	DeleteObject (SelectObject (DC, OldFont));

	SetTextAlign (DC, OldAlign);

	SetBkMode (DC, OldMode);

	SetTextColor (DC, OldColor);

	End;

Finally, we’re ready to draw the year:

Procedure DrawYear;

	Var

		OldFont: hFont;

		OldAlign: Word;

		OldMode: Integer;

		OldColor: tColorRef;

		N: tOString;

	Begin

	With LogFont do

		Begin

		lfHeight := -24;

		lfWeight := fw_Normal;

		StrCopy (lfFaceName, 'Arial');

		End;

	OldFont := SelectObject (DC, CreateFontIndirect (LogFont));

	OldAlign := SetTextAlign (DC, ta_Center or ta_Baseline);

	OldMode := SetBkMode (DC, Transparent);

	OldColor := SetTextColor (DC, RGB (127, 0, 0));

	N.Init (10);

	N.SetTextN (Data^.Year);

	TextOut (DC, Width div 2, Height - (YMargin div 2),

		N.CString, N.Length);

	N.Done;

	DeleteObject (SelectObject (DC, OldFont));

	SetTextAlign (DC, OldAlign);

	SetBkMode (DC, OldMode);

	SetTextColor (DC, OldColor);

	End;

Because the Clipboard mechanism is already enabled via tDlgAppWindow, all you have to do now to paste images of calendar days onto the Clipboard is compile and run Date. Run the Clipboard Viewer applet, too, so you can see what’s been pasted. Notice the metafile image (which Clipboard Viewer calls “picture”) stretches to fit the window it appears in, while the size of the bitmap image is frozen. This is a normal difference between metafiles and bitmaps. Bitmaps supposedly transfer to the screen faster, but a metafile’s ability to adjust its size is far superior.

Preparing for OLE�tc "Preparing for OLE"\l�

The demands of OLE require a couple of enhancements to other building blocks. There are, for example, a few methods that need to be added to tDlgAppWindow since, although needed by OLE, they could also prove useful in non-OLE applications. We also have to enhance the tClipboardFormat class so it can provide some additional information OLE will require.

Yielding to Other Applications from tDlgAppWindow�tc "Yielding to Other Applications from tDlgAppWindow"\l�

OLE requires that an application be able to enter a secondary message loop when waiting for an OLE client to send it messages. tDlgAppWindow is the logical place to add this method, since it may be equally useful to non-OLE applications.

Although an application may have just one active message loop at a time, sometimes it’s useful to invoke a secondary message loop while processing a message dispatched by the first. For example, implementation of OLE includes numerous callback functions, asynchronously invoked by OLE. Some of these merely set flags. If your application is waiting for an OLE response, it must invoke a secondary message loop until the flag has been set or cleared as desired.

That isn’t the only use, though. The main reason for entering such a loop is to allow other applications—not just OLE clients—a chance to process during a lengthy operation.

We’re going to create such a loop and place it in a method named Yield. If you are keeping the code from different chapters separate, copy the DlgApp unit into the CHAP11 directory, open it, then add the following code:

Type

	pDlgAppWindow = ^tDlgAppWindow;

	tDlgAppWindow = Object (tDlgWindow)

			

			

		Procedure Yield;

		End;

			

			

Procedure tDlgAppWindow.Yield;

	Var

		Msg: tMsg;

	Begin

	While PeekMessage (Msg, 0, 0, 0, pm_Remove) do

		If not Application^.ProcessAppMsg (Msg) then

			DispatchMessage (Msg);

	End;

PeekMessage will retrieve messages from the system message queue as long as there are any. It will also allow other applications to process their own messages. Remember, Windows is not a “pre-emptive” operating system; it will not give other applications time to process, unless you relinquish your turn. (Under ObjectWindows, this happens whenever a method it has invoked completes.) By invoking this message loop in the middle of other processing, we force that processing to suspend; but this does not prevent the application from processing other messages that arrive, including the message from the OLE library that will set WaitingForRelease to False.

Implementing a Clipboard Stream�tc "Implementing a Clipboard Stream"\l�

We’ve made most of our object classes streamable, and in the Date applet we actually Put and Get data using a tDosStream. In this section, we’ll implement a tClipStream class in which objects can be placed and retrieved directly from the Clipboard.

All streams are derived from tStream, a purely abstract class with a number of methods that must be overridden. tStream provides Get and Put methods (written in Assembler for highest efficiency) and deals with the aspects of object identification that are required so objects sent to a stream can be retrieved from it.

A derived stream class, such as tClipStream, merely adds the mechanics of reading, writing, and buffering the data on its way to or from its destination, whether it be disk file, EMS memory, or the Clipboard.

The definition of tClipStream is as follows:

Type

	pClipStream = ^tClipStream;

	tClipStream = Object (tStream)

		Handle: tHandle;

		Data: pChar;

		Position,

		Size: LongInt;

		Delta: Word;

		Constructor Init (aHandle: tHandle);

		Destructor Done; Virtual;

		Function GetPos: LongInt; Virtual;

		Function GetSize: LongInt; Virtual;

		Procedure Read (var Buffer; Count: Word); Virtual;

		Procedure Seek (Pos: LongInt); Virtual;

		Procedure Truncate; Virtual;

		Procedure Write (var Buffer; Count: Word); Virtual;

		Function GetHandle: tHandle;

		End;

The Handle property will hold the global handle that must be sent to or obtained from the Clipboard. Data is a pointer to Handle’s memory block. Position and Size are used to manage the block itself, while Delta specifies by how much the block is to grow should more data be added to it than it can hold.

The constructor will be passed a handle from the Clipboard if it is to garner a stream, or zero if it is to render one:

Constructor tClipStream.Init (aHandle: tHandle);

	Begin

	Inherited Init;

	Handle := aHandle;

	Data := Nil;

	Position := 0;

	Delta := 1024;

	If Handle = 0 then

		Begin

		Size := Delta;

		Handle := GlobalAlloc (gmem_DdeShare, Size);

		End

	else

		Size := GlobalSize (Handle);

	Data := GlobalLock (Handle);

	End;

The destructor reflects the fact that a global handle passed to, or obtained from, the Clipboard must not be freed; the Clipboard retains ownership of it. tClipStream simply unlocks it.

Destructor tClipStream.Done;

	Begin

	If Handle <> 0 then

		GlobalUnlock (Handle);

	Inherited Done;

	End;

GetPos and GetSize are simple methods that tStream requires we override:

Function tClipStream.GetPos: LongInt;

	Begin

	GetPos := Position;

	End;

Function tClipStream.GetSize: LongInt;

	Begin

	GetSize := Size;

	End;

Read copies the next Count characters from the stream into the supplied buffer:

Procedure tClipStream.Read (var Buffer; Count: Word);

	Begin

	Move (Data[Position], Buffer, Count);

	Inc (Position, Count);

	End;

Like GetPos and GetSize, Seek overrides an abstract method to return a current position. Although tClipStream objects will not use this, if a random-access tClipStream derivative were ever written, this method would be used to implement it:

Procedure tClipStream.Seek (Pos: LongInt);

	Begin

	Position := Pos;

	End;

Truncate is used to shrink the stream’s global block to the amount actually used:

Procedure tClipStream.Truncate;

	Begin

	Handle := GlobalRealloc (Handle, Position, gmem_DdeShare);

	Size := Position;

	End;

Write is the most complex of these methods because it has to verify that the global block is big enough before adding any data to it. If it isn’t, it re-allocates the block, increasing its size by Delta:

Procedure tClipStream.Write (var Buffer; Count: Word);

	Begin

	While (Position + Count) > Size do

		Begin

		GlobalUnlock (Handle);

		Handle := GlobalRealloc (Handle, Size + Delta, gmem_DdeShare);

		If Handle <> 0 then

			Inc (Size, Delta)

		else

			Error (300, 0);

		End;

	Move (Buffer, Data[Position], Count);

	Inc (Position, Count);

	End;

The error number 300 is one we made up to signify a tClipStream error.

Finally, we add a new method, GetHandle, to obtain the handle for the Clipboard. When this happens, it isn’t ours anymore, so the Handle property is cleared:

Function tClipStream.GetHandle: tHandle;

	Begin

	Truncate;

	GetHandle := Handle;

	Handle := 0;

	Data := Nil;

	End;

This should be the last method called before disposing of the stream object.

Enhancing tClipboard�tc "Enhancing tClipboard"\l�

As a tCollection derivative, tClipboard has inherited a Delete method used to remove format objects from the collection. However, this method triggers an error if an attempt is made to delete an object that isn’t there. Use of the Clipboard for OLE requires formats to be added and removed repeatedly; we’d like a more forgiving Delete method to support that. We’ll also need an easy method to locate a specific format.

To delete a format from the tClipboard object without fear of error, check first to see if the item is present:

Procedure tClipboard.Delete (Item: pClipboardFormat);

	Begin

	If IndexOf (Item) > -1 then

		Inherited Delete (Item);

	End;

An easy way to obtain the tClipboardFormat object associated with a given format ID involves the FirstThat method:

Function tClipboard.FindFormatID (aFormatID: Word): pClipboardFormat;

	Function Matches (F: pClipboardFormat): Boolean; Far;

		Begin

		Matches := (F^.Format = aFormatID);

		End;

	Begin

	FindFormatID := FirstThat (@Matches);

	End;

As a tCollection object, tClipboard stores its formats in an internal list. We also need a method that, given a specific format, will return the next in the list. This method will be used by OLE to enumerate formats:

Function tClipboard.Next (F: pClipboardFormat): pClipboardFormat;

	Var

		i: Word;

	Begin

	If Assigned (F) then

		Begin

		i := IndexOf (F) + 1;

		If i < Count then

			F := At (i)

		else

			F := Nil;

		End;

	Next := F;

	End;

Enhancing the Datafile Unit�tc "Enhancing the Datafile Unit"\l�

The Datafile unit needs a few small enhancements to make it OLE-ready, so it can deal with embedded documents as well as files.

An OLE document has a name that functions like a filename, but isn’t very pretty and isn’t at all meaningful to the user. To make up for this deficiency, OLE also provides a document title more suitable for display.

The tDatafile class already has properties for both Pathname and Title, but Pathname is used in several messages. We must add a UseTitleInMessageBox flag to indicate when the title should be used instead:

Type

	pDatafile = ^tDatafile;

	tDatafile = Object (tObject)

			

			

		UseTitleInMessageBox: Boolean;

			

			

		End;

The new flag must be initialized:

Constructor tDatafile.Init;

	Var

		Length, i: Integer;

	Begin

			

			

	UseTitleInMessageBox := False;

	End;

The ShouldSave method must then be enhanced to make use of this information:

Function tDatafile.ShouldSave

		(

		Window: pWindowsObject;

		BaseCaption: pOString

): Boolean;

	Var

		Prompt: tOString;

		Result: Integer;

	Begin

	ShouldSave := False;

	If Dirty then

		Begin

			

			

		If PathName.Length = 0 then

			Prompt.AppendR (str_Untitled)

		else if UseTitleInMessageBox then

			Prompt.Append (Title)

		else

			Prompt.Append (PathName);

		Prompt.AppendP ('?');

			

			

		If Result = id_Yes then

			If (Pathname.Length = 0) and

				 not UseTitleInMessageBox then

				ShouldSave := ShouldSaveAs (Window)

			else

				SouldSave := True;

		else SouldSave := False;

			

			

		End;

	End;

Adding OLE Server Status to an Application�tc "Adding OLE Server Status to an Application"\l�

The multi-layered structure of the applications we’ve been writing—a tMainDlg class derived from the tDlgAppWindow class—suggests that OLE can best be implemented by inserting a new layer between them. The new layer will inherit the dialog-based application behavior of tDlgAppWindow and add to it the unique behavior required of OLE servers.

This new layer, tDlgServer, will incorporate the OLE server/document/object hierarchy and make it easy to make any file-based tDlgAppWindow application an OLE server as well.

Creating the tDlgServer Unit�tc "Creating the tDlgServer Unit"\l�

The unit skeleton for tDlgServer is much like other units we’ve created. It will meet the requirements of an OLE server and provide the framework for the tOleDocument and tOleObject classes it will manage.

In actual OLE server applications, tMainDlg will be derived from tDlgServer instead of from tDlgAppWindow. Ideally, any file-based tDlgAppWindow app could be made into an OLE server by simply changing its tMainDlg ancestor and adding a Clipboard format or two.

When building a unit, we’ve always started with the skeleton, then added to it method by method. Unfortunately, the various components of OLE are so interrelated that such an approach is likely to confuse more than enlighten. So we’ll break with tradition in this chapter and present the entire Interface section of the DlgSvr unit at once:

Unit DlgSvr;

	(***)

						Interface

	(***)

	Uses

		WinTypes,

		WinProcs,

		Objects,

		OWindows,

		ODialogs,

		ShellAPI,

		Win31,

		Ole,

		ClpBoard,

		OString,

		Datafile,

		DlgApp;

	Const

		str_PrimaryVerb = 11001;

		str_UpdateMenu = 11002;

		str_In = 11003;

		str_CannotUpdateClient = 11004;

	Type

		pServerData = ^tServerData;

		pDlgServer = ^tDlgServer;

		pDocumentData = ^tDocumentData;

		pDocument = ^tDocument;

		pDocObjectData = ^tDocObjectData;

		pDocObject = ^tDocObject;

		tServerData = Record

			OleServer: tOleServer;

			Server: pDlgServer;

			End;

		tDlgServer = Object (tDlgAppWindow)

			OleData: tServerData;

			ID: lhServer;

			Initializing: Boolean;

			Embedding: Boolean;

			Embedded: Boolean;

			Released: Boolean;

			Document: pDocument;

			ObjectLink: pClipboardFormat;

			FileSaveMenuText: tOString;

			(**

			(*	These methods provide basic enhancements of tDlgAppWindow

			(*	to support embdedd doucments

			(**)

			Constructor Init;

			Destructor Done; Virtual;

			Procedure SetupWindow; Virtual;

			Procedure SetArgument (const Param: tOString); Virtual;

			Procedure RegisterAppExtended (ClassKey: hKey); Virtual;

			Function CanClose: Boolean; Virtual;

			Procedure FileNew; Virtual;

			Procedure FileOpen; Virtual;

			Procedure cmFileSave (var Msg: tMessage);

				Virtual cm_First + cm_FileSave;

			Procedure cmFileSaveAs (var Msg: tMessage);

				Virtual cm_First + cm_FileSaveAs;

			Procedure FileSave; Virtual;

			Procedure DocSave; Virtual;

			Procedure FileClose; Virtual;

			Procedure FileCopy; Virtual;

			(**

			(*	These methods add support of OLE

			(*	server callback functions

			(**)

			Procedure CreateDocument

				(

				DocID: lhServerDoc;

				aDocName: pChar;

				var ServerDoc: pOleServerDoc

);

			Procedure DocOpen; Virtual;

			Procedure DocNew; Virtual;

			Procedure DocCopy (TemplatePathname: pChar); Virtual;

			Procedure DocEdit; Virtual;

			Function ExecuteCommands

				 (var Commands: tOString): tOleStatus; Virtual;

			(**

			(*	These methods add support of the

			(*	Clipboard and OLE data transfer

			(**)

			Procedure GetOwnerLink

				(var aClass, aDocument, anItem: tOString); Virtual;

			Procedure GetObjectLink

				(var aClass, aDocument, anItem: tOString); Virtual;

			Function RenderObject

				(

				aDocObject: pDocObject;

				aFormat: Word;

				var Handle: tHandle

): tOleStatus; Virtual;

			Function GarnerObject

				(

				aDocObject: pDocObject;

				aFormat: Word;

				Handle: tHandle

): tOleStatus; Virtual;

			End;

		tDocumentData = Record

			OleServerDoc: tOleServerDoc;

			Document: pDocument;

			End;

		tDocument = Object (tObject)

			OleData: tDocumentData;

			ID: lhServerDoc;

			Released: Boolean;

			Server: pDlgServer;

			DocName: tOString;

			DocObjects: tCollection;

			Bounds: tRect;

			Palette: hPalette;

			Constructor Init

				(aServer: pDlgServer; var aDocName: tOString);

			Constructor InitLink

				(

				aServer: pDlgServer;

				var aDocName: tOString;

				anID: lhServerDoc

);

			Destructor Done; Virtual;

			Procedure Rename (Var NewName: tOString);

			Procedure SetBounds (const aBounds: tRect); Virtual;

			Function SetPalette (var aLogPalette: tLogPalette): tOleStatus;

			Function ExecuteCommands

 				(var Commands: tOString): tOleStatus; Virtual;

			Function CreateDocObject

				(

				const anItem: tOString;

				aClient: pOleClient

): pDocObject;

			Procedure NotifyClients;

			End;

		tDocObjectData = Record

			OleObject: tOleObject;

			DocObject: pDocObject;

			End;

		tDocObject = Object (tObject)

			OleData: tDocObjectData;

			Released: Boolean;

			Document: pDocument;

			Item: tOString;

			Client: pOleClient;

			Bounds: tRect;

			Palette: hPalette;

			Constructor Init

				(

				aDocument: pDocument;

				const anItem: tOString;

				aClient: pOleClient

);

			Destructor Done; Virtual;

			Function QueryProtocol

			 	(const aProtocol: tOString): Boolean; Virtual;

			Procedure Show (TakeFocus: Boolean); Virtual;

			Function DoVerb (Verb: Word): tOleStatus; Virtual;

			Procedure SetTargetDevice

 				(aTargetDevice: tOleTargetDevice); Virtual;

			Procedure ClearTargetDevice; Virtual;

			Procedure SetBounds (const aBounds: tRect); Virtual;

			Function SetPalette (var aLogPalette: tLogPalette): tOleStatus;

			Procedure NotifyClient;

			End;

	Type

		pOwnerLink = ^tOwnerLink;

		tOwnerLink = Object (tClipboardFormat)

			Data: pChar;

			DataLength: Word;

			Constructor Init;

			Destructor Done; Virtual;

			Procedure Render

				(

				Parent: pWindowsObject;

				var Buffer: Pointer;

				var BufferLength: LongInt

); Virtual;

			End;

	Type

		pObjectLink = ^tObjectLink;

		tObjectLink = Object (tOwnerLink)

			Constructor Init;

			End;

	(***)

					Implementation

	(***)

Although we’ve shown the entire Interface section, in this section we are concerned primarily with the tDlgServer class. While this new class is derived from tDlgAppWindow, it is another abstract class and won’t make a suitable application by itself. It is intended only to provide the interface to OLE in as transparent a manner as possible to the tMainDlg class that will be derived from it.

The tDlgServer constructor has to register the application with OLE as well as the more mundane chores:

Constructor tDlgServer.Init;

	Begin

	Inherited Init;

	OleData.OleServer.lpVTbl := @ServerVTbl;

	OleData.Server := @Self;

	OleRegisterServer (Application^.Name,

		@OleData, ID, hInstance, ole_Server_Multi);

	Initializing := True;

	Embedding := False;

	Embedded := False;

	Released := False;

	Document := Nil;

	ObjectLink := New (pObjectLink, Init);

	FileSaveMenuText.Init (0);

	End;

To register itself with OLE, Init must first prepare the data structure property called OleData. You’ll come upon this name three times, once each for tDlgServer, tDocument, and tDocObject. In each case, it is a structure required by OLE for registering that type of object. Also, in each case, it has two fields: a pointer to another structure, and a pointer back to the object that owns it.

OLE is not part of ObjectWindows, but it was designed by programmers who tried to incorporate as many object-oriented principles into it as possible. Although the negative side of that is that practically every aspect of OLE is riddled with the word “object”—usually meaning different things—the good thing is that OLE can be folded into the ObjectWindows paradigm rather cleanly.

In the case of OleData, OLE’s designers built it so we could add data—like a pointer to Self—that would travel with it. Since OLE communicates with the server application by invoking various callback functions, that little pointer makes it possible to route those functions back into the tDlgServer (or tDocument or tDocObject) object that they concern.

OLE also achieves virtual methods by using a virtual method table of its own design. The other pointer in OleData is to a virtual method table, which we’ll look at later.

With OleData prepared, Init can invoke OleRegisterServer, which returns ID, a handle we should save because we’ll have to pass it to other OLE functions. The ole_Server_Multi constant merely informs OLE that additional instances of the application should be started if the user wants to edit more than one of our objects at a time. (An MDI application typically acts on all objects with a single instance by opening additional document windows as needed.)

Next, four flags are given initial values. Initializing is self-explanatory; it is reset to False by SetupWindow. Embedding is set if the application is acting on an OLE object rather than a simple file. Embedded is set to True if an embedded OLE object, as opposed to a file, is loaded. Finally, the Released flag is set to True when the OLE library either demands or permits the application to close down.

Document points to an object of tDocument class. tDlgAppWindow descendants should only open one document at a time, so that’s all we support. Document will point to tDocument objects when they are created (when a file is created or opened), or when they are given to the application by OLE through the callback functions. In the meantime, Nil marks it as being unassigned.

The ObjectLink property is a Clipboard format. This format should be available only when the server is editing a file that has been saved. Because the format may be made available and unavailable through the course of a single editing session, we save the format object so we can Insert and Delete it from the Clipboard as needed.

Finally, the FileSaveMenuText property is initialized. When an OLE server is editing an embedded object, the File..Save menu is supposed to read File..Update instead. However, if the user of such an application chooses the File..New, File..Open, or File..Save As command, the server will no longer be working on an embedded object and the menu should return to normal. This property allows us to preserve the menu’s original text.

Since the Init method registers the server, you’d expect Done to unregister it (which OLE refers to as “revoke”). However, OLE may have instigated the closure:

Destructor tDlgServer.Done;

	Begin

	If not Released then

		If OleRevokeServer (ID) = ole_OK then

			Released := True;

	While not Released do

		Yield;

	Clipboard.Delete (ObjectLink);

	Dispose (ObjectLink, Done);

	FileSaveMenuText.Done;

	Inherited Done;

	End;

If OLE commanded the application to close, Released will already be True; otherwise, OleRevokeServer is invoked. It may return ole_OK, but it can also return ole_WaitingForRelease. If that’s the case, we must loop until the flag has been set asynchronously, using the new Yield method. We remove the ObjectLink format from the Clipboard collection if it was there, so we can dispose of it explicitly. (We can’t rely on Clipboard to destroy it implicitly at the time the application closed because it may not be there at the time.)

SetupWindow is invoked prior to the dialog actually being displayed. This is fortunate, because if an OLE server is being started by OLE, it is supposed to remain invisible until OLE actually tells it to appear:

Procedure tDlgServer.SetupWindow;

	Begin

	Inherited SetupWindow;

	If Embedding then

		CmdShow := sw_Hide;

	Initializing := False;

	End;

CmdShow is a system variable we haven’t used until now. Normally, it would contain Window’s instructions for initial display mode—normal, minimized, or maximized—but we can override that with sw_Hide if appropriate. The Embedding flag will have been set during command-line processing—something performed by the inherited SetupWindow—and includes invoking SetArgument, an abstract method tDlgServer overrides:

Procedure tDlgServer.SetArgument (const Param: tOString);

	Var

		aText: tOString;

	Begin

	If Param.MatchesP ('Embedding') then

		Begin

		aText.InitTextR (str_UpdateMenu);

		FileSaveMenuText.SetText (FileSaveMenu^.Text);

		FileSaveMenu^.SetText (aText);

		aText.Done;

		Embedding := True;

		End;

	End;

If the “Embedding” argument is present on the command line, this method modifies the menu appropriately and sets the Embedding flag.

Two things are expected of a conventional tDlgAppWindow application: it can create a new file, and it can open an existing file. OLE servers can do these things as well, but they add two more abilities to the list: they can create a new embedded object that does not exist in any stand-alone file, and they can access an existing embedded object.

Moreover, when an OLE server creates or opens a file, it must notify the OLE subsystem that it’s done so; the file it has opened may be an object linked to some other application.

For this to work, OLE must know certain things about the server. This information is stored in the Registration Database, discussed in Chapter 5. In addition to the items tDlgAppWindow.RegisterApp already places in the Registration Database, there are a few OLE-specific keys needed as well. By overriding the RegisterAppExtended, we’ll have the opportunity to add them:

Procedure tDlgServer.RegisterAppExtended (ClassKey: hKey);

	Var

		ModuleName,

		VerbName: tOString;

		ProtocolKey,

		ServerKey,

		VerbKey: hKey;

	Begin

	RegCreateKey (ClassKey, 'protocol\StdFileEditing', ProtocolKey);

	RegCreateKey (ProtocolKey, 'server', ServerKey);

	RegCreateKey (ProtocolKey, 'verb\0', VerbKey);

	ModuleName.Init (128);

	ModuleName.Length :=

		GetModuleFileName (hInstance,

			ModuleName.CString, ModuleName.GetBufferLength);

	RegCheckValue (ServerKey, ModuleName);

	ModuleName.Done;

	VerbName.InitTextR (str_PrimaryVerb);

	RegCheckValue (VerbKey, VerbName);

	VerbName.Done;

	Inherited RegisterAppExtended (ClassKey);

	RegCloseKey (ProtocolKey);

	RegCloseKey (ServerKey);

	RegCloseKey (VerbKey);

	End;

The Server key value is the name of the application’s .EXE file, and tells OLE where to find the server should OLE need to start it. The “verb\0” key represents the primary verb; if there were more, their keys would be “verb\1,” “verb\2,” and so on. Our primary verb is “&Edit” (or the language-translated equivalent). The ampersand is present because the string itself will be used by OLE clients to construct object-related menu items.

The inherited CanClose method must be replaced by one that understands the special needs of embedded documents:

Function tDlgServer.CanClose: Boolean;

	Begin

	If Datafile.ShouldSave (@Self, @BaseCaption) then

		Case Embedded of

			False: FileSave;

			True: DocSave;

			End;

	CanClose := not Datafile.Dirty;

	End;

The FileNew method must be enhanced to automatically create an OLE document to correspond to the untitled file it creates. It must also recognize the Embedding flag. FileNew, you recall, is invoked automatically by tDlgAppWindow.SetupWindow if there is no filename listed on the command line. However, if an OLE server is started with the �/Embedding argument but no filename, it’s supposed to wait for further instructions from the OLE library, and therefore should not create a new file. If a new file is created, it doesn’t yet exist on disk, so the ObjectLink Clipboard format must be removed:

Procedure tDlgServer.FileNew;

	Var

		Untitled: tOString;

	Begin

	If not (Initializing and Embedding) then

		Begin

		Untitled.InitTextR (str_Untitled);

		Document := New (pDocument, Init (@Self, Untitled));

		Untitled.Done;

		Clipboard.Delete (ObjectLink);

		Inherited FileNew;

		End;

	End;

Likewise, FileOpen must associate an OLE document with the physical file. Even though an OLE client has not requested that this file be edited, it could still be linked to an OLE client somewhere. By registering with OLE, OLE can notify any clients if the file is updated. This method accesses an existing disk file, so the ObjectLink format can be returned to the Clipboard:

Procedure tDlgServer.FileOpen;

	Begin

	Inherited FileOpen;

	Document := New (pDocument, Init (@Self, Datafile.Pathname));

	Clipboard.Insert (ObjectLink);

	End;

cmFileSave and cmFileSaveAs must be enhanced to recognize whether the object being saved is embedded:

Procedure tDlgServer.cmFileSave (var Msg: tMessage);

	Begin

	If (not Embedded) and (Datafile.PathName.Length = 0) then

		cmFileSaveAs (Msg)

	else

		Case Embedded of

			False: FileSave;

			True: DocSave;

			End;

	End;

Procedure tDlgServer.cmFileSaveAs (var Msg: tMessage);

	Begin

	If Datafile.ShouldSaveAs (@Self) then

		Begin

		If Embedded then

			Begin

			Embedded := False;

			FileSaveMenu^.SetText (FileSaveMenuText);

			End;

		FileCopy;

		FileSave;

		End;

	End;

The FileSave method must advise OLE that the document has been saved. In addition, any OLE clients with objects in that document must also be advised:

Procedure tDlgServer.FileSave;

	Begin

	If OleSavedServerDoc (ID) = ole_Error_Cant_Update_Client then

		ErrorBox (str_CannotUpdateClient)

	else

		Inherited FileSave;

	Document^.NotifyClients;

	End;

DocSave is similar to FileSave. It allows a descendent application to perform special processing on embedded documents:

Procedure tDlgServer.DocSave;

	Begin

	If OleSavedServerDoc (Document^.ID) =

			ole_Error_Cant_Update_Client then

		ErrorBox (str_CannotUpdateClient)

	else

		Datafile.Dirty := False;

	Document^.NotifyClients;

	End;

FileCopy is a new method used to notify OLE that a document (which may have been embedded) is now an independent disk file. When this happens, the ObjectLink format can be returned to the Clipboard:

Procedure tDlgServer.FileCopy;

	Begin

	Document^.Rename (Datafile.Pathname);

	Clipboard.Insert (ObjectLink);

	End;

The FileClose method simply destroys the Document object:

Procedure tDlgServer.FileClose;

	Begin

	If Assigned (Document) then

		Begin

		Dispose (Document, Done);

		Document := Nil;

		End;

	End;

Supporting OLE Server Callback Functions�tc "Supporting OLE Server Callback Functions"\l�

Registering the application with the Registration Database is not the same as registering the server. OLE must be informed when a server becomes active and when it is closed, so it knows if it has to start a new instance when a client needs to edit an object.

Before we look at any more tDlgServer methods, we must examine the OLE registration process more closely, since it involves those callback functions we’ve mentioned, and many of those callbacks are intimately associated with the remaining methods.

Once the server has been registered, OLE will control it mostly by executing various callback functions whose addresses we supply as part of the registration procedure. Recall that when we implemented the tDde class in Chapter 10, we used a trick to convert the DDEML transactions into tDde methods (by allowing just one tDde object and storing its address in a static variable). OLE is more accommodating; we are allowed to pass any other information we want to it, which OLE returns when it invokes the callbacks. If, as part of that data, we include the address of the server object, the callback can invoke the server method with no problem and no tricks.

The minimum amount of data OLE requires of a server is the tOleServer structure from the OLE unit. This structure has the following format:

Type

	tOleServer = Record

		lpvtbl: pOleServerVTbl;

		End;

The one field is a pointer to another structure, the one with the addresses of the callback functions. But when we send this structure to OleRegisterServer, we can append to it anything we want, like the tDlgServer object’s own address. To do so, we incorporate tOleServer in a larger structure. Since there is a circular relationship between tServerData and tDlgServer, they must both be part of the same Type statement, with the pointers declared first:

Type

	pServerData = ^tServerData;

	pDlgServer = ^tDlgServer;

	tServerData = Record

		OleServer: tOleServer;

		Server: pDlgServer;

		End;

	tDlgServer = Object (tDlgAppWindow)

		OleData: tServerData;

			

			

		End;

Before we can invoke OleRegisterServer, we must place the addresses of the callback functions in the ServerVTbl variable:

Var

	ServerVTbl: tOleServerVTbl;

			

			

Begin

@ServerVTbl.Open := @ServerOpen;

@ServerVTbl.Create := @ServerCreate;

@ServerVTbl.CreateFromTemplate := @ServerCreateFromTemplate;

@ServerVTbl.Edit := @ServerEdit;

@ServerVTbl.Exit := @ServerExit;

@ServerVTbl.Release := @ServerRelease;

@ServerVTbl.Execute := @ServerExecute;

End.

In the example OLE code provided with Borland Pascal version 7.0, there is a comment claiming smart callbacks must not be used with OLE. It therefore invokes MakeProcInstance for each of the callback functions, and assigns the resulting thunk address to ServerVTbl. However, I’ve tested pretty thoroughly and can’t find any problem with using the smart callbacks option instead; so that’s what we’ll do.

In the following sections, we’ll look at the structure and purpose of each of these callback functions.

Accommodating the OLE Server Callback Functions�tc "Accommodating the OLE Server Callback Functions"\l�

The seven OLE server callback functions are invoked when OLE needs to control an OLE application at the server level. Most of these functions instruct the application on which OLE object to create or open. All of them must tie closely into the tDlgServer class.

The ServerOpen function is invoked when the client wants the server to open an existing linked document:

Function ServerOpen

		(

		Data: pServerData;

		DocID: lhServerDoc;

		DocName: pChar;

		var ServerDoc: pOleServerDoc

): tOleStatus; Export;

	Begin

	Data^.Server^.CreateDocument (DocID, DocName, ServerDoc);

	ServerOpen := ole_OK;

	Data^.Server^.DocOpen;

	End;

Such a document will be found in a disk file, and the document name will be the name of that file. The CreateDocument method, used by several other callback functions as well, will create the tDocument object:

Procedure tDlgServer.CreateDocument

		(

		DocID: lhServerDoc;

		aDocName: pChar;

		var ServerDoc: pOleServerDoc

);

	Var

		Caption: tOString;

	Begin

	Caption.InitTextC (aDocName);

	Document := New (pDocument, InitLink (@Self, Caption, DocID));

	ServerDoc := @Document^.OleData;

	Caption.Done;

	End;

The DocOpen method enables an application to meet whatever special needs its linked documents have:

Procedure tDlgServer.DocOpen;

	Begin

	Datafile.Clear;

	SetCaption;

	Embedded := True;

	Datafile.UseTitleInMessageBox := True;

	End;

Of course, an application would augment this method to provide any special processing.

The ServerCreate callback is invoked by OLE when a new embedded document is to be created. It uses the pointer to the tDlgServer object to invoke that object’s CreateDocument method, then invoke DocNew:

Function ServerCreate

		(

		Data: pServerData;

		DocID: lhServerDoc;

		Class, DocName: pChar;

		var ServerDoc: pOleServerDoc

): tOleStatus; Export;

	Begin

	Data^.Server^.CreateDocument (DocID, DocName, ServerDoc);

	ServerCreate := ole_OK;

	Data^.Server^.DocNew;

	End;

We can ignore the Class parameter, because tDlgServer applications only support one object class. DocNew is the embedded analog to DocOpen; where the latter is invoked for a linked object, DocNew indicates an embedded object:

Procedure tDlgServer.DocNew;

	Begin

	Datafile.Clear;

	SetCaption;

	Embedded := True;

	Datafile.UseTitleInMessageBox := True;

	End;

While this method is identical to DocOpen, it is a separate method in case it must be augmented in a descendant application that needs to know the difference between a linked and an embedded document.

The ServerCreateFromTemplate callback function is invoked when the client wants the server to create a new document by copying an existing one:

Function ServerCreateFromTemplate

		(

		Data: pServerData;

		DocID: lhServerDoc;

		Class, DocName, TemplateName: PChar;

		var ServerDoc: POleServerDoc

): tOleStatus; Export;

	Begin

	Data^.Server^.CreateDocument (DocID, DocName, ServerDoc);

	ServerCreateFromTemplate := ole_OK;

	Data^.Server^.DocCopy (TemplateName);

	End;

The DocCopy method should be augmented to actually make the copy; otherwise, it is similar to DocNew:

Procedure tDlgServer.DocCopy (TemplatePathname: pChar);

	Begin

	Datafile.Clear;

	SetCaption;

	Embedded := True;

	Datafile.UseTitleInMessageBox := True;

	End;

The ServerEdit callback function is invoked when the client wants the server to open an existing embedded object:

Function ServerEdit

		(

		Data: pServerData;

		DocID: lhServerDoc;

		Class, DocName: pChar;

		var ServerDoc: pOleServerDoc

): tOleStatus; Export;

	Begin

	Data^.Server^.CreateDocument (DocID, DocName, ServerDoc);

	ServerEdit := ole_OK;

	Data^.Server^.DocEdit;

	End;

The object itself does not exist on disk; OLE will supply it in a later callback function. DocEdit provides the same chance for specialization as DocNew, DocOpen, and so on:

Procedure tDlgServer.DocEdit;

	Begin

	Datafile.Clear;

	SetCaption;

	Embedded := True;

	Datafile.UseTitleInMessageBox := True;

	End;

The ServerExit callback function is invoked by the OLE library only when a fatal error occurs:

Function ServerExit (Data: pServerData): tOleStatus; Export;

	Var

		Msg: tMessage;

	Begin

	If OleRevokeServer (Data^.Server^.ID) = ole_OK then

		Data^.Server^.Released := True;

	Data^.Server^.cmExit (Msg);

	End;

If OleRevokeServer doesn’t return ole_OK, tDlgServer.Done will wait for the Released flag to be set. This happens when the ServerRelease callback function is invoked:

Function ServerRelease (Data: pServerData): tOleStatus; Export;

	Begin

	Data^.Server^.Released := True;

	End;

There is just one server callback function that is concerned with neither document creation nor termination, and that’s ServerExecute. This callback function can send commands from the client to the server—if the server chooses to support them.

OLE commands have the same format as DDE commands, described in Chapter 10. Like DDE commands, OLE commands are application-specific, so tDlgServer can’t actually interpret them or try to execute them. It can, however, copy them from the global memory block in which they arrive, then send them to a server method for interpreting:

Function ServerExecute

		(Data: pServerData; Commands: tHandle): tOleStatus; Export;

	Var

		Buffer: tOString;

		P: pChar;

	Begin

	Buffer.Init (0);

	P := GlobalLock (Commands);

	Buffer.SetTextC (P);

	GlobalUnlock (Commands);

	ServerExecute := Data^.Server^.ExecuteCommands (Buffer);

	Buffer.Done;

	End;

The ExecuteCommands method itself merely returns the OLE error that indicates commands aren’t supported. An application that does support them must override this method:

Function tDlgServer.ExecuteCommands

		(var Commands: tOString): tOleStatus;

	Begin

	ExecuteCommands := ole_Error_Command;

	End;

Understanding OLE Clipboard Formats�tc "Understanding OLE Clipboard Formats"\l�

An OLE server must register Native, OwnerLink, and ObjectLink formats—in a particular order. You must know what these formats signify to use them properly.

As you may recall from our study of the Clipboard, data is placed in various formats, from most complete to least complete. “Complete” is defined (perhaps arbitrarily) by the source application.

OLE adds three formats to the game: Native, OwnerLink, and ObjectLink. The Native format supplies data in any form—usually binary—convenient to the server and/or handler. This should be the ultimate in “complete” formats, with nothing omitted. Since the data is stored in a format known only to the server, this is the format used by clients to create embedded objects. If the Native format is the first the client encounters, the object can be embedded.

The OwnerLink format is Class Name, Document Name, and Item Name, where the three components are delimited by nulls and terminated by a double null. The length of the Item Name component may be zero if the item is the document. This format merely identifies the server responsible for dealing with this object, should the client choose to embed it.

The ObjectLink contents, which are formatted identically to those of OwnerLink, point to the saved document containing this object. ObjectLink is only present if the source document has been saved as a file. When a client application peruses the list of available formats, the presence of ObjectLink tells it that the Edit..Paste Link command can be activated, just as the presence of Native format tells it embedding is possible.

The arrangement of formats on the Clipboard by a server, and the requesting of available formats by a client, is governed by ritual. For example, take two OLE-aware applications: Word for �Windows and Excel. If you select some text from a Word document and copy it to the Clipboard, the following formats are made available, in this order (you can check this using the Clipboard applet’s Display command):

Owner Display

Rich Text Format

Native

OwnerLink

Picture

Text

Link

ObjectLink

OEM Text

If you try to paste into an Excel spreadsheet, Excel will scan the list. Owner Display, in which Word actually paints the item, is only good while Word is running, and only for display—not for storage. Rich Text Format doesn’t do Excel any good, but since Excel can embed objects, it can use the Native format. (If you chose the Edit..Paste Special command instead, Excel would have continued to search the list, determined that an object link or direct implantation of text was also possible, and would have notified you with a dialog box.)

On the other hand, if you try to paste back into a Word document, Word will see Rich Text Format first and quit; after all, it would be silly for Word to embed a Word object, since you embed or link to an object because the primary application doesn’t know how to display or edit that object. For Word, Rich Text Format is actually more complete than Native, so that’s what it uses.

It’s possible for an application to use its own Native data to receive information and apply it without embedding it. After all, the Clipboard is frequently used to pass information between different instances of the same application. An application can use the GetClipboardOwner API call to see if the native data in the Clipboard is its own.

Providing ObjectLink and OwnerLink �Clipboard Formats�tc "Providing ObjectLink and OwnerLink �Clipboard Formats"\l�

The abstract tClipboardFormat class we designed in Chapter 9 requires you to derive usable format classes from it. The ObjectLink and OwnerLink classes are simple enough that much of their required processing can be supplied by the tDlgServer class that will use them.

Both OwnerLink and ObjectLink formats use identical methods to store their data, a fact we can use to our advantage when deriving the object representation of one from the other. As stated earlier in this chapter, the format is Class Name, Document Name, and Item Name, with the components separated by nulls and terminated by a double null.

We can derive tOwnerLink from tClipboardFormat, and tObjectLink from tOwnerLink with the following Type definition added to the DlgSvr unit:

Type

	pOwnerLink = ^tOwnerLink;

	tOwnerLink = Object (tClipboardFormat)

		Data: pChar;

		DataLength: Word;

		Constructor Init;

		Destructor Done; Virtual;

		Procedure Render

			(

			Parent: pWindowsObject;

			var Buffer: Pointer;

			var BufferLength: LongInt

); Virtual;

		End;

Type

	pObjectLink = ^tObjectLink;

	tObjectLink = Object (tOwnerLink)

		Constructor Init;

		End;

The constructor of each of these classes merely supplies its format name:

Constructor tOwnerLink.Init;

	Begin

	Inherited InitCustom ('OwnerLink');

	Data := Nil;

	DataLength := 0;

	End;

Constructor tObjectLink.Init;

	Begin

	Inherited InitCustom ('ObjectLink');

	Data := Nil;

	DataLength := 0;

	End;

Note that, although tObjectLink is derived from tOwnerLink, it bypasses its immediate ancestor’s constructor and therefore has to initialize the Data and DataLength properties itself. tObjectLink can, however, share tOwnerLink’s destructor:

Destructor tOwnerLink.Done;

	Begin

	Inherited Done;

	If Assigned (Data) then

		FreeMem (Data, DataLength);

	End;

The Render method is also intended to be shared, to the point that the TypeOf function is used to detect to which object type it belongs:

Procedure tOwnerLink.Render

		(

		Parent: pWindowsObject;

		var Buffer: Pointer;

		var BufferLength: LongInt

);

	Var

		Class,

		Document,

		Item: tOString;

	Begin

	If Assigned (Data) then

		FreeMem (Data, DataLength);

	Class.Init (0);

	Document.Init (0);

	Item.Init (0);

	If TypeOf (Self) = TypeOf (tObjectLink) then

		pDlgServer (Parent)^.GetObjectLink (Class, Document, Item)

	else

		pDlgServer (Parent)^.GetOwnerLink (Class, Document, Item);

	Class.AppendP (#0);

	Class.Append (Document);

	Class.AppendP (#0);

	Class.Append (Item);

	Class.AppendP (#0);

	DataLength := Class.Length + 1;

	GetMem (Data, DataLength);

	Move (Class.CString[0], Data[0], DataLength);

	Class.Done;

	Document.Done;

	Item.Done;

	Buffer := Data;

	BufferLength := DataLength;

	End;

The bulk of this method is spent formatting the three items supplied by tDlgServer.GetObjectLink or tDlgServer.GetOwnerLink. Remember, the address handed to Buffer must remain valid after this method has completed, so memory is allocated and attached to the object itself.

The GetOwnerLink and GetObjectLink methods are simple and �identical:

Procedure tDlgServer.GetOwnerLink

		(var aClass, aDocument, anItem: tOString);

	Begin

	aClass.SetTextC (Application^.Name);

	aDocument.SetText (Datafile.Pathname);

	End;

Procedure tDlgServer.GetObjectLink

		(var aClass, aDocument, anItem: tOString);

	Begin

	aClass.SetTextC (Application^.Name);

	aDocument.SetText (Datafile.Pathname);

	End;

The idea is to supply tMainDlg versions of these methods that invoke their ancestors—the code reproduced above—to fill in Class and �Document, then supply Item if needed. Item should be empty for an OLE object that is an entire document; if a given server can only put entire documents in the Clipboard, then there’s no need to override these methods at all.

The RenderObject method is invoked when an object must be rendered for the OLE client, and uses the Clipboard format object to do the rendering. Although a DocObject pointer is supplied, it is not used. This method will need to be augmented by an application that supports rendering of separate objects:

Function tDlgServer.RenderObject

		(

		aDocObject: pDocObject;

		aFormat: Word;

		var Handle: tHandle

): tOleStatus;

	Var

		Format: pClipboardFormat;

	Begin

	Format := pClipboardFormat (Clipboard.FindFormatID (aFormat));

	If Assigned (Format) then

		Begin

		Handle := Format^.RenderHandle (@Self);

		RenderObject := ole_OK;

		End

	else

		RenderObject := ole_Error_Format;

	End;

The GarnerObject method receives data from an OLE client:

Function tDlgServer.GarnerObject

		(

		aDocObject: pDocObject;

		aFormat: Word;

		Handle: tHandle

): tOleStatus;

	Var

		Format: pClipboardFormat;

	Begin

	Format := pClipboardFormat (Clipboard.FindFormatID (aFormat));

	If Assigned (Format) then

		Begin

		Format^.GarnerHandle (@Self, Handle);

		GarnerObject := ole_OK;

		End

	else

		GarnerObject := ole_Error_Format;

	End;

Managing a Document via the tDocument Class�tc "Managing a Document via the tDocument Class"\l�

OLE supplies a set of functions and callbacks for document management. The tDocument class encapsulates this and provides a framework in which documents can work with tDlgServer.

A tDocument is defined with the following properties:

tDocumentData = Record

	OleServerDoc: tOleServerDoc;

	Document: pDocument;

	End;

tDocument = Object (tObject)

	OleData: tDocumentData;

	ID: lhServerDoc;

	Released: Boolean;

	Server: pDlgServer;

	DocName: tOString;

	DocObjects: tCollection;

	Bounds: tRect;

	Palette: hPalette;

		

		

	End;

OleData, ID, and Released are similar to the tDlgServer properties of the same name. Server is a simple backlink to the document’s owner. DocName will contain the internal name for the document (which will not be a filename if the document is embedded). The DocObjects collection will contain a DocObject object for each OLE object in the document. (Some applications may support more than one.) The Bounds and Palette properties simply hold information that OLE clients send; the application may choose to make use of these.

Like a server, a document must be registered with OLE. If the server creates the document, the task of registration falls on it. However, when OLE creates the document (via the ServerCreate, ServerOpen, ServerCreateFromTemplate, or ServerEdit callback function) it is already registered. To deal with these two cases, we supply two constructors:

Constructor tDocument.Init

		(aServer: pDlgServer; var aDocName: tOString);

	Begin

	InitLink (aServer, aDocName, 0);

	OleRegisterServerDoc (Server^.ID, aDocName.CString, @OleData, ID);

	End;

Constructor tDocument.InitLink

		(

		aServer: pDlgServer;

		var aDocName: tOString;

		anID: lhServerDoc

);

	Begin

	Inherited Init;

	OleData.OleServerDoc.lpVTbl := @DocVTbl;

	OleData.Document := @Self;

	Server := aServer;

	ID := anID;

	DocName.InitText (aDocName);

	Bounds.Left := 0;

	Bounds.Top := 0;

	Bounds.Right := 0;

	Bounds.Bottom := 0;

	Palette := 0;

	DocObjects.Init (1, 5);

	Released := False;

	End;

Before we can invoke OleRegisterServerDoc we must place the addresses of the callback functions in the DocVTbl variable. This is done in the unit’s main block:

Var

	ServerVTbl: tOleServerVTbl;

	DocVTbl: tOleServerDocVTbl;

			

			

Begin

@ServerVTbl.Open := @ServerOpen;

			

			

@DocVTbl.Save := @DocSave;

@DocVTbl.Close := @DocClose;

@DocVTbl.SetHostNames := @DocSetHostNames;

@DocVTbl.SetDocDimensions := @DocSetDocDimensions;

@DocVTbl.GetObject := @DocGetObject;

@DocVTbl.Release := @DocRelease;

@DocVTbl.SetColorScheme := @DocSetColorScheme;

@DocVTbl.Execute := @DocExecute;

End.

The destructor can either trigger the revocation of a document or respond to it, depending on the state of the Released flag:

Destructor tDocument.Done;

	Begin

	DocName.Done;

	IF not Released then

		If OleRevokeServerDoc (ID) = ole_OK then

			Released := True;

	While not Released do

		Server^.Yeild;

	If Palette <> 0 then

		DeleteObject (Palette);

	DocObjects.Done;

	Inherited Done;

	End;

The tDlgServer.FileCopy method invoked the tDocument.Rename method to notify OLE that the document’s physical name had changed:

Procedure tDocument.Rename (var NewName: tOString);

	Begin

	If OleRenameServerDoc (ID, NewName.CString) = ole_OK then

		DocName.SetText (NewName);

	End;

Accommodating the OLE Document Callback Functions�tc "Accommodating the OLE Document Callback Functions"\l�

The eight OLE document callback functions are invoked when OLE needs to control an OLE application at the document level. Most of these functions instruct the application on which OLE object to create or open. All of them must tie closely into the tDocument class.

The DocSave callback function is just the OLE library’s way of choosing the File..Save command; so that’s how we implement it:

Function DocSave (Data: pDocumentData): tOleStatus; Export;

	Var

		Msg: tMessage;

	Begin

	Data^.Document^.Server^.cmFileSave (Msg);

	DocSave := ole_OK;

	End;

The DocClose callback notifies the server that the document is to be closed immediately. The user does not need to be asked if he or she wants to save; the client will have already done that. The document is then released via a separate callback:

Function DocClose (Data: pDocumentData): tOleStatus; Export;

	Begin

	Data^.Document^.ID := 0;

	DocClose := ole_OK;

	End;

The DocSetHostNames function supplies the server with polite names for embedded documents, like “Bitmap in MYDOC.DOC.” (The internal names for embedded objects are rather bizarre, using digits and pound signs; users would not find them reassuring at all.) All the DocSetHostNames function has to do is assemble the components, with the local language’s equivalent of the word “In,” and use them to set the caption:

Function DocSetHostNames

		(

		Data: pDocumentData;

		ClientName, ObjectName: PChar

): tOleStatus; Export;

	Begin

	Data^.Document^.DocName.SetTextC (ObjectName);

	Data^.Document^.DocName.AppendR (str_In);

	Data^.Document^.DocName.AppendC (ClientName);

	Data^.Document^.Server^.SetCaption;

	DocSetHostNames := ole_OK;

	End;

The DocSetDimensions callback function specifies the size of the bounding rectangle in which an embedded object will appear in the client application. This allows the server to format especially for that size if desired. We implement this callback by invoking a SetBounds method:

Function DocSetDocDimensions

		(

		Data: pDocumentData;

		var Bounds: tRect

): tOleStatus; Export;

	Begin

	Data^.Document^.SetBounds (Bounds);

	DocSetDocDimensions := ole_OK;

	End;

By augmenting SetBounds, an application will be able to actually redraw or reconfigure the image when DocSetDocDimensions is invoked. The base method just sets the tDocument.Bounds property:

Procedure tDocument.SetBounds (const aBounds: tRect);

	Begin

	Bounds := aBounds;

	End;

The DocGetObject callback function is analogous to the server callbacks such as ServerCreate that ask for a document to be created. A single document may contain many OLE objects, so we gave tDocument a DocObjects collection property. DocGetObject invokes the tDocument method CreateDocObject to obtain the address of a new tDocObject object:

Function DocGetObject

		(

		Data: pDocumentData;

		Item: pChar;

		var OleObject: pOleObject;

		Client: pOleClient

): tOleStatus; Export;

	Var

		anItem: tOString;

		DocObject: pDocObject;

	Begin

	anItem.InitTextC (Item);

	DocObject := Data^.Document^.CreateDocObject (anItem, Client);

	Data^.Document^.DocObjects.Insert (DocObject);

	OleObject := @DocObject^.OleData;

	DocGetObject := ole_OK;

	anItem.Done;

	End;

CreateDocObject allocates the new tDocObject object:

Function tDocument.CreateDocObject

		(

		const anItem: tOString;

		aClient: pOleClient

): pDocObject;

	Begin

	CreateDocObject :=

		New (pDocObject, Init (@Self, anItem, aClient));

	End;

When a document is revoked, OLE may respond with a ole_Wait_ For_Release indication, just as with the server itself. The DocRelease callback function is invoked by OLE when the wait is over:

Function DocRelease (Data: pDocumentData): tOleStatus; Export;

	Begin

	Data^.Document^.Released := True;

	DocRelease := ole_OK;

	End;

The DocSetColorScheme callback function supplies the server with the client’s preferred palette:

Function DocSetColorScheme

		(

		Data: pDocumentData;

		var Palette: tLogPalette

): tOleStatus; Export;

	Begin

	DocSetColorScheme := Data^.Document^.SetPalette (Palette);

	End;

The server should use this palette for any drawing it does. We’ve provided a property for it that is set in the SetPalette method:

Function tDocument.SetPalette

		(var aLogPalette: tLogPalette): tOleStatus;

	Var

		aPalette: hPalette;

	Begin

	aPalette := CreatePalette (aLogPalette);

	If aPalette = 0 then

		SetPalette := ole_Error_Palette

	else

		Begin

		If Palette <> 0 then

			DeleteObject (Palette);

		Palette := aPalette;

		SetPalette := ole_OK;

		End;

	End;

Finally, the DocExecute callback function is analogous to the ServerExecute callback; commands that arrive via this route are expected to apply to the indicated document, rather than to the server as a whole. As with ServerExecute, tDlgServer can only supply an abstract method to receive the commands, since they are application-specific:

Function DocExecute

		(

		Data: pDocumentData;

		Commands: tHandle

): tOleStatus; Export;

	Var

		Buffer: tOString;

		P: pChar;

	Begin

	Buffer.Init (0);

	P := GlobalLock (Commands);

	Buffer.SetTextC (P);

	GlobalUnlock (Commands);

	DocExecute := Data^.Document^.ExecuteCommands (Buffer);

	Buffer.Done;

	End;

Function tDocument.ExecuteCommands

		(var Commands: tOString): tOleStatus;

	Begin

	ExecuteCommands := ole_Error_Command;

	End;

Working with OLE Objects�tc "Working with OLE Objects"\l�

Don’t confuse OLE objects with ObjectWindows objects! OLE objects are the individual items contained in an OLE document, which OLE controls via a set of callback functions similar to those associated with documents and servers.

OLE objects only come into play when an application is acting as an OLE server—that is, when tDlgServer.Embedding is True. As you design an application, you must decide into how many objects the application data should be divided. Often, the answer will be “one.” In a linked file containing many records, on the other hand, an object may equal just one record. Keep in mind that the object is the thing the client displays and the user double-clicks on to edit. Inseparably related components, like Name and Address, should not be broken into separate objects.

Still, to support multiple objects in a document, the tDocument class has a collection property called DocObjects, which can contain one (ObjectWindows) object for each (OLE) object assigned to the �document.

The definitions of tDocObject and tDocObjectData include the following properties:

tDocObjectData = Record

	OleObject: tOleObject;

	DocObject: pDocObject;

	End;

tDocObject = Object (tObject)

	OleData: tDocObjectData;

	Released: Boolean;

	Document: pDocument;

	Item: tOString;

	Client: pOleClient;

	Bounds: tRect;

	Palette: hPalette;

		

		

	End;

OleData and Released are analogous to their counterparts in tDlgServer and tDocument. Document is a backlink to the tDocObject’s owner. Item names the objects if there are more than one. (An object with no name refers to the entire document.) Client is supplied when OLE requests the object to be created. Bounds and Palette may be supplied by some clients, as for tDocument and tDlgServer.

As with servers and documents, objects have a set of callback functions whose addresses must be placed in the DocObjectVTbl variable when the unit is activated:

Var

	ServerVTbl: tOleServerVTbl;

	DocVTbl: tOleServerDocVTbl;

	DocObjectVTbl: tOleObjectVTbl;

			

			

Begin

			

			

@DocObjectVTbl.QueryProtocol := @ObjectQueryProtocol;

@DocObjectVTbl.Release := @ObjectRelease;

@DocObjectVTbl.Show := @ObjectShow;

@DocObjectVTbl.DoVerb := @ObjectDoVerb;

@DocObjectVTbl.GetData := @ObjectGetData;

@DocObjectVTbl.SetData := @ObjectSetData;

@DocObjectVTbl.SetTargetDevice := @ObjectSetTargetDevice;

@DocObjectVTbl.SetBounds := @ObjectSetBounds;

@DocObjectVTbl.EnumFormats := @ObjectEnumFormats;

@DocObjectVTbl.SetColorScheme := @ObjectSetColorScheme;

End.

A server never registers a document object with OLE; the document is provided with enough information when DocGetObject is invoked. The constructor only has to store this information in its properties:

Constructor tDocObject.Init

		(

		aDocument: pDocument;

		const anItem: tOString;

		aClient: pOleClient

);

	Begin

	Inherited Init;

	OleData.OleObject.lpVTbl := @DocObjectVTbl;

	OleData.DocObject := @Self;

	Released := False;

	Document := aDocument;

	Item.InitText (anItem);

	Client := aClient;

	Bounds.Left := 0;

	Bounds.Top := 0;

	Bounds.Right := 0;

	Bounds.Bottom := 0;

	Palette := 0;

	End;

Like the other destructors of OLE components, a document object may or may not have initiated its destruction. So, based on the state of the Released flag, it may or may not call OleRevokeObject:

Destructor tDocObject.Done;

	Begin

	Item.Done;

	If not Released then

		Begin

		OleRevokeObject (Client);

		Client := Nil;

		End;

	Inherited Done;

	End;

If an object is changed, the client must be notified:

Procedure tDocObject.NotifyClient;

	Begin

	If Assigned (Client) then

		Client^.lpvtbl^.CallBack

			(Client, Ole_Changed, @OleData.OleObject);

	End;

The ObjectQueryProtocol callback is triggered when the client application needs to know if a particular protocol is supported. Currently, there are only two protocols: StdFileEdit and StdExecute. Any OLE object should support the first; few support the second. Our implementation of ObjectQueryProtocol simply invokes a tDocObject method for the answer:

Function ObjectQueryProtocol

		(Data: pDocObjectData; Protocol: pChar): Pointer; Export;

	Var

		aProtocol: tOString;

	Begin

	aProtocol.InitTextC (Protocol);

	If Data^.DocObject^.QueryProtocol (aProtocol) then

		ObjectQueryProtocol := Data

	else

		ObjectQueryProtocol := Nil;

	aProtocol.Done;

	End;

The QueryProtocol method supplied responds positively only to StdFileEditing. If an application also supports the StdExecute protocol, it must override this method:

Function tDocObject.QueryProtocol

		(const aProtocol: tOString): Boolean;

	Begin

	QueryProtocol := aProtocol.MatchesP ('StdFileEditing');

	End;

A document object can be deleted by either the client or the server. If the client deletes the object, the OLE library invokes the ObjectRelease callback function:

Function ObjectRelease (Data: pDocObjectData): tOleStatus; Export;

	Begin

	Data^.DocObject^.Released := True;

	ObjectRelease := ole_OK;

	End;

The ObjectShow callback function is triggered when it’s time for the server application to become visible:

Function ObjectShow

		(

		Data: pDocObjectData;

		TakeFocus: Bool

): tOleStatus; Export;

	Begin

	Data^.DocObject^.Show (TakeFocus);

	ObjectShow := ole_OK;

	End;

The Show method causes the application to become visible. If, in a particular application, it’s possible for an object to scroll or otherwise move out of sight, the TakeFocus parameter indicates whether the application should bring the object back into view. Such an application would need to augment the default Show method:

Procedure tDocObject.Show (TakeFocus: Boolean);

	Begin

	Document^.Server^.Show (sw_Normal);

	BringWindowToTop (Document^.Server^.hWindow);

	End;

The ObjectDoVerb callback is invoked when the client activates the object. If the user double-clicked it, the client probably wants the server to edit the object; remember, though, a server can support many verbs. ObjectDoVerb can be used in place of the ObjectShow callback. In any case, it invokes a tDocObject method:

Function ObjectDoVerb

		(

		Data: pDocObjectData;

		Verb: Word;

		Show, TakeFocus: Bool

): tOleStatus; Export;

	Begin

	If Show then

		Data^.DocObject^.Show (TakeFocus);

	ObjectDoVerb := Data^.DocObject^.DoVerb (Verb);

	End;

The supplied DoVerb method only allows the primary verb, “verb 0.” An application will have to override this method if it intends to support more verbs:

Function tDocObject.DoVerb (Verb: Word): tOleStatus;

	Begin

	If Verb = 0 then

		DoVerb := ole_OK

	else

		DoVerb := ole_Error_DoVerb;

	End;

The ObjectGetData callback function is invoked by the OLE library when the client wants data from the server. This function must be able to render the data in any of the supported Clipboard formats. To do this, the callback invokes the tDlgServer method RenderObject:

Function ObjectGetData

		(

		Data: pDocObjectData;

		Format: tClipFormat;

		var Handle: tHandle

): tOleStatus; Export;

	Begin

	ObjectGetData :=

	Data^.DocObject^.Document^.Server^.RenderObject

		(Data^.DocObject, Format, Handle);

	End;

The ObjectSetData callback function is the inverse of ObjectGetData; it supplies an object to the server from the client:

Function ObjectSetData

		(

		Data: pDocObjectData;

		Format: tClipFormat;

		Handle: tHandle

): tOleStatus; Export;

	Begin

	ObjectSetData :=

		Data^.DocObject^.Document^.Server^.GarnerObject

			(Data^.DocObject, Format, Handle);

	End;

The ObjectSetTargetDevice callback function enables the server to customize the display of an object for a particular device, such as a printer. The function might be passed a zero in the Handle parameter to signify the object should be customized for the screen. Otherwise, Handle is a global handle to a structure describing the device, and the function is responsible for freeing the memory when it’s done:

Function ObjectSetTargetDevice

		(

		Data: pDocObjectData;

		Handle: tHandle

): tOleStatus; Export;

	Var

		aTargetDevice: pOleTargetDevice;

	Begin

	If Handle <> 0 then

		Begin

		aTargetDevice := GlobalLock (Handle);

		Data^.DocObject^.SetTargetDevice (aTargetDevice^);

		GlobalUnlock (Handle);

		GlobalFree (Handle);

		End

	else

		Data^.DocObject^.ClearTargetDevice;

	ObjectSetTargetDevice := ole_OK;

	End;

tDlgServer applications aren’t likely to customize objects for different displays, so this operation is only supported by abstract methods:

Procedure tDocObject.SetTargetDevice

		(aTargetDevice: tOleTargetDevice);

	Begin

	End;

Procedure tDocObject.ClearTargetDevice;

	Begin

	End;

The ObjectSetBounds and ObjectSetColorScheme callback functions are analogous to DocSetDimensions and DocSetColorScheme, respectively, and are handled in the same way:

Function ObjectSetBounds

		(

		Data: pDocObjectData;

		var Bounds: tRect

): tOleStatus; Export;

	Begin

	Data^.DocObject^.SetBounds (Bounds);

	ObjectSetBounds := ole_OK;

	End;

Procedure tDocObject.SetBounds (const aBounds: tRect);

	Begin

	Bounds := aBounds;

	End;

Function ObjectSetColorScheme

		(

		Data: pDocObjectData;

		var Palette: tLogPalette

): tOleStatus; Export;

	Begin

	ObjectSetColorScheme := Data^.DocObject^.SetPalette (Palette);

	End;

Function tDocObject.SetPalette

		(var aLogPalette: tLogPalette): tOleStatus;

	Var

		aPalette: hPalette;

	Begin

	aPalette := CreatePalette (aLogPalette);

	If aPalette = 0 then

		SetPalette := ole_Error_Palette

	else

		Begin

		If Palette <> 0 then

			DeleteObject (Palette);

		Palette := aPalette;

		SetPalette := ole_OK;

		End;

	End;

The last document object callback that a server has to supply is ObjectEnumFormats. This function takes an interesting approach to enumerating the available formats: It is invoked repeatedly, first with an aFormat of zero, then with the format previously returned. The function has to return the format ID that follows the ID it supplies. When none are left, it returns zero:

Function ObjectEnumFormats

		(

		Data: pDocObjectData;

		aFormat: tOleClipFormat

): tOleClipFormat; Export;

	Var

		Clipboard: pClipboard;

		F: pClipboardFormat;

	Begin

	Clipboard := @Data^.DocObject^.Document^.Server^.Clipboard;

	If aFormat = 0 then

		F := Clipboard^.At (0)

	else

		F := Clipboard^.Next (Clipboard^.FindFormatID (aFormat));

	If Assigned (F) then

		ObjectEnumFormats := F^.Format

	else

		ObjectEnumFormats := 0;

	End;

Adding OLE to the Date Application�tc "Adding OLE to the Date Application"\l�

Now that the DlgSvr unit is complete, we can revisit the Date application with an eye to converting it from a tDlgAppWindow application to a tDlgServer application—hopefully without too much effort!

To make tMainDlg derive from tDlgServer, just change the Object clause in the definition. We’ll also have to override the DocNew method:

Type

	pMainDlg = ^tMainDlg;

	tMainDlg = Object (tDlgServer)

		

		

	Procedure DocNew; Virtual;

	End;

In addition, the new Clipboard format, Native, must be defined:

Type

	pNativeFormat = ^tNativeFormat;

	tNativeFormat = Object (tClipboardFormat)

		Function RenderHandle

			(Parent: pWindowsObject): tHandle; Virtual;

		Procedure GarnerHandle

			(Parent: pWindowsObject; h: tHandle); Virtual;

		End;

In tMainDlg.Init, the new Clipboard format must be added to the Clipboard. The order in which formats are inserted is important:

Constructor tMainDlg.Init;

	Var

		d: Word;

		n: tOString;

	Begin

	Inherited Init;

			

			

	Clipboard.Insert (New (pNativeFormat, InitCustom ('Native')));

	Clipboard.Insert (New (pOwnerLink, Init));

	Clipboard.Insert (New (pMetafileFormat, Init (250, 300)));

	Clipboard.Insert (New (pBitmapFormat, Init (250, 300)));

	End;

When a Date object is created, even an embedded one, it is initialized to today’s date—it already has a valid value. Therefore, when an embedded Date object is created, the Dirty flag should be set so the user can update it:

Procedure tMainDlg.DocNew;

	Begin

	Inherited DocNew;

	Datafile.Dirty := True;

	End;

The Native format RenderHandle method gives us a chance to use the tClipStream class:

Function tNativeFormat.RenderHandle

		(

		Parent: pWindowsObject

): tHandle;

	Var

		S: tClipStream;

	Begin

	S.Init (0);

	S.Put (pMainDlg (Parent)^.Data);

	RenderHandle := S.GetHandle;

	S.Done;

	End;

So does its twin, GarnerHandle:

Procedure tNativeFormat.GarnerHandle

		(

		Parent: pWindowsObject;

		h: tHandle

);

	Var

		S: tClipStream;

	Begin

	If Assigned (pMainDlg (Parent)^.Data) then

		Begin

		pMainDlg (Parent)^.Day[pMainDlg (Parent)^.Data^.Day].Raise;

		Dispose (pMainDlg (Parent)^.Data, Done);

		End;

	S.Init (h);

	pMainDlg (Parent)^.Data := pData (S.Get);

	S.Done;

	pMainDlg (Parent)^.UpdateDisplay;

	End;

That’s it—and you can expect a similar amount of effort to go into adapting any tDlgAppWindow application to become an OLE server!

