Files with the extension .INI are used by most Windows applications to store configuration information. This information may be essential (such as the name of the subdirectory certain files are stored in) or optional (such as where the user prefers the application to appear on-screen).

Early versions of Windows applications stored their configuration information in the WIN.INI file. But the number of applications owned by a typical user and the amount of information that had to be preserved made it impractical to have just one .INI file. Nowadays, most applications have their own .INI files, accessed via API functions like GetPrivateProfileString and WritePrivateProfileString. By combining the various parameters in one or another arcane ways, these two routines can be used to perform most required .INI file-management functions.

In this chapter, we’ll build a tIniData class that will encapsulate the various methods and properties required to make maintaining and accessing your application’s .INI file a breeze.

Creating the tIniData Class�tc "Creating the tIniData Class"�

You can use the tIniData object class to manage your .INI files, including enumerating, adding, changing, and deleting sections and keys, and even encrypting selected values so they cannot be easily read by the casual user. Before you can start coding, however, you should know just what a .INI file is used for and how it’s formatted.

Understanding the .INI File Format�tc "Understanding the .INI File Format"�

Nearly all .INI files share a common structure, because they are usually managed by the same API functions.

Thanks to the Windows API function GetPrivateProfileString and its cousins, nearly every .INI file uses a common format. (An exception is Word for Windows, whose .INI file is in a binary format.) In this format, keyed values are grouped into sections. When there were just two .INI files (SYSTEM and WIN), the section was assumed to be the name of an application, and much of the documentation still refers to the section header that way. Now, with most applications owning their own .INI files, the files contain only one or a few sections.

The name of the section is always set off by brackets, and may include embedded blanks. The following list contains valid section names, the way they might appear in an .INI file:

[Microsoft Word]

[Clock]

[Menus]

Section names are not case sensitive, so entering “CLOCK” or even “cloCK” would access the “Clock” section equally well.

Beneath each section name there is usually a group of keyed values (an empty section is permissible, however). A typical section from a WIN.INI file is shown below:

[Desktop]

Pattern=(None)

GridGranularity=0

wallpaper=camper.bmp

IconSpacing=75

TileWallPaper=1

In this case, there are five keyed values, the first of which is “Pattern,” located in the “Desktop” group. Like section names, keys are not case sensitive.

The value of a key begins at the first character past the equal sign, so

wallpaper=camper.bmp

is not the same as

wallpaper = camper.bmp

There is a Windows API variant of GetPrivateProfileString called GetPrivateProfileInt, which combines the former with a built-in conversion to a binary numeric. Interestingly, although GetPrivateProfileInt is documented to return a Word, the compiler makes no complaint if you assign the value to an integer. The conversion is made properly if the keyed value is a negative number, too. This suggests Pascal’s “strong typing” may not be quite as strong as we were led to believe.

Unless you hard-code a fully-qualified pathname as the filename parameter, Windows will always look for an .INI file in the Windows directory—not in the Windows\System directory, the application’s “current” directory, nor any of the directories listed in your PATH environment variable. There is one alternative to hard-coding a fully qualified pathname: you could instead construct a fully qualified pathname at run-time, but I recommend you let your .INI file reside in the Windows directory with all the others.

Creating the IniData Unit�tc "Creating the IniData Unit"�

To create the tIniData class, the first step is to copy the class skeleton and change the default names appropriately.

To begin the INIDATA project, create a new project directory called CHAP06 and copy CLASSKEL.PAS into it, naming it INIDATA.PAS. Open INIDATA.PAS, then change the default names so the unit looks like this:

Unit IniData;

	(***)

						Interface

	(***)

	Uses

		WinTypes,

		WinProcs,

		Objects,

		OWindows,

		WinDOS,

		OString;

	Type

		pIniData = ^tIniData;

		tIniData = Object (tObject)

			Constructor Init;

			Destructor Done; Virtual;

			End;

	(***)

					Implementation

	(***)

	Constructor tIniData.Init;

		Begin

		Inherited Init;

		End;

	Destructor tIniData.Done;

		Begin

		Inherited Done;

		End;

	End.

Since a tIniData object represents data already stored in a file, it will never be streamed; so you may delete the Load and Store methods and the call to RegisterType. On the other hand, don’t forget to add WinDOS to the list of units in the Uses clause; we’ll need it later to support some conventional file I/O we’ll have to do.

Managing Sections�tc "Managing Sections"�

The section is the highest-level division within an .INI file. The tIniData class must be able to list all the sections. Since there can be duplicate key names under different sections, we must also add a Section property that can help distiguish to which key reference is being made.

Listing .INI File Sections�tc "Listing .INI File Sections"�

Although all standard .INI files are composed of one or more sections, the Windows API provides no assistance in listing the sections in a .INI file. The tIniData.Sections property is a tCollection derivative that provides an easy way to enumerate sections in a .INI file.

To list the sections in a .INI file, we’ll have to add two properties to the skeleton tIniData class built in the previous section: PathName and Sections.

Type

	pIniData = ^tIniData;

	tIniData = Object (tObject)

		PathName: tOString;

		Sections: tCollection;

		Constructor Init;

		Destructor Done; Virtual;

		End;

Since PathName and Sections are objects, they must be initialized and destroyed:

Constructor tIniData.Init;

	Begin

	tObject.Init;

	PathName.Init (fsPathname);

	Sections.Init (5, 10);

	End;

Destructor tIniData.Done;

	Begin

	PathName.Done;

	Sections.Done;

	tObject.Done;

	End;

I’ve initialized PathName to a MaxLength of fsPathname because, when we set it, we’re going to fully qualify it ourselves (if it isn’t already). I gave the Sections tCollection a pre-allocation of five members, because few .INI files have more sections than that. On the other hand, if there are more than five, there are probably a lot more than five; so I told Sections that, if it does run out of slots for sections, to re-allocate additional groups of ten.

To enumerate the sections in an .INI file, we’ll have to read the file. Of course, the same is true even if we only wanted one keyed value; but GetPrivateProfileString hides the file handling and it’s easy to pretend it isn’t there. Not so with section enumeration; we’ll have to actually open the file, read it line by line (noting which lines contain section names), then close it. We’ll even have to deal with the possibility of not being able to find the file.

Since we have to do regular file I/O, we’ll need to fully qualify the desired Pathname. The reason is that Windows does not use the same rules to search for .INI files that it uses when searching for other files. To avoid confusion, we’ll have to mimic the GetPrivateProfileString file search ourselves. This means we need a full-fledged SetPathname method. What’s worse, we need three: one for each of the string data types we want to support. Sure, we could write only one SetPathname method and try to accommodate its calling sequence later, but the tiny bit of extra work up front will quickly pay for itself when you actually start using the tIniData class.

Following the convention we set with the tOString class, we’ll name the three methods SetPathname, SetPathnameC, and SetPathnameP. Whichever method actually does the work will use a WinDOS function called FileSplit, which requires as input a C-style string; so we’ll let SetPathnameC be the method that sweats; the other two methods will convert their parameters and invoke it:

Procedure tIniData.SetPathnameC (aPathname: pChar);

	Var

		Dir: tOString;

		Name: tOString;

		Ext: tOString;

	Begin

	Dir.Init (fsPathName);

	Name.Init (fsFileName);

	Ext.Init (fsExtension);

	FileSplit (aPathName,

		Dir.CString, Name.CString, Ext.CString);

	Dir.RecalcLength;

	Name.RecalcLength;

	Ext.RecalcLength;

	If Dir.Length = 0 then

		Begin

		Dir.Length :=

			GetWindowsDirectory (Dir.CString,

				Dir.GetMaxLength);

		If Dir.Length > 3 then

			Dir.AppendP ('\');

		End;

	If Ext.Length = 0 then

		Ext.SetTextC ('.INI');

	Pathname.SetText (Dir);

	PathName.Append (Name);

	PathName.Append (Ext);

	Dir.Done;

	Name.Done;

	Ext.Done;

	Sections.FreeAll;

	End;

This code should look familiar. I borrowed it almost entirely from the tDataFile class. One difference is that I have to add a backslash to the directory name I obtain via GetWindowsDirectory (as long as it isn’t a root directory). The reason is that, while FileSplit produces directory names with trailing backslashes, GetWindowsDirectory does not. (It’s a miracle we ever get anything done!)

The tCollection method FreeAll will delete and dispose of every object in the Sections collection, without disposing of the collection itself.

You Can Retain Ownership of tCollection Objects

If you want to retain ownership and responsibility of objects in a tCollection—in other words, if you have kept all the pointers independent of the collection—you can use the DeleteAll method instead of FreeAll. By using DeleteAll, you’ll eventually have to dispose of the objects yourself. A tCollection calls FreeAll as part of its Done processing. To get around this and dispose of the collected objects yourself, invoke tCollection.DeleteAll just before tCollection.Done; then dispose of the object elements as you like (just don’t forget to!).

The matching methods for the other string types are barely worth typing, except for the work they’ll save you later:

Procedure tIniData.SetPathname (Const aPathname: tOString);

	Begin

	SetPathnameC (aPathname.CString);

	End;

Procedure tIniData.SetPathnameP (Const aPathname: String);

	Var

		p: tOString;

	Begin

	p.InitTextP (aPathname);

	SetPathnameC (p.CString);

	p.Done;

	End;

Most applications with a tIniData object will not need to enumerate sections, so we won’t burden them with that overhead. Instead, if and when an application needs to refer to the list of sections, it should call the RefreshSections method first.

RefreshSections has to actually open, read, and close a file. We have to protect ourselves against this method being called before SetPathname, so unless there is a value in Pathname, it does nothing at all. This has the added benefit of making a non-existent file look like an existing, but empty one—the same way the PrivateProfile functions work:

Procedure tIniData.RefreshSections;

	Var

		IniFile: Text;

		IniFileBuffer: Array [0..1024] of Char;

		Line: String;

		SectionName: pOString;

	Begin

	If Pathname.Length > 0 then

		Begin

		{$I-}

		Assign (IniFile, PathName.PString);

		SetTextBuf (IniFile, IniFileBuffer);

		Reset (IniFile);

		If IoResult = 0 then

			Begin

			While not Eof (IniFile) do

				Begin

				ReadLn (IniFile, Line);

				If (Length (Line) > 2) and (Line[1] = '[') then

					Begin

					SectionName :=

						New (pOString, Init (Length (Line) - 2));

					SectionName^.SetText_ (@Line[2],

						Length (Line) - 2);

					Sections.Insert (SectionName);

					End;

				End;

			End;

		Close (IniFile);

		{$I+}

		End;

	End;

There are no startling techniques in this method (assuming you are familiar with traditional Turbo Pascal file I/O) and only one small surprise: we’ve already found a use for the “internal” tOString method, SetText_. It’s a good thing we didn’t make it private! SetText_ lets us copy only the character after the opening bracket, through the character just before the closing bracket, into SectionName. We neither keep nor dispose of the object pointed to by SectionName, because once we turn it over to a tCollection like Sections, the tCollection “owns” it and will dispose of it when the collection itself is disposed of.

The SetPathname and RefreshSections methods are complex enough that incremental development technique cries out for testing before we go further. Since tIniData is derived from tObject, and none of its properties are descendants of tWindowsObject, we can throw together one of those little WinCRT apps for testing. Here’s INITEST1.PAS:

Program IniTest1;

Uses

	WinCRT,

	IniData,

	OString;

Var

	Ini: tIniData;

	s: Word;

	SectionName: pOString;

Begin

WriteLn ('============== Start ================');

Ini.Init;

Ini.SetPathnameC ('WIN.INI');

Ini.RefreshSections;

For s := 1 to Ini.Sections.Count do

	Begin

	SectionName := Ini.Sections.At (s - 1);

	WriteLn (SectionName^.CString);

	End;

Ini.Done;

WriteLn ('============== Done ================');

End.

Running this application produces a stream of WIN.INI section names that sails by almost too quickly to read. Now we can confidently move on to the next section.

Creating and Initializing a Section Property�tc "Creating and Initializing a Section Property"�

Approximately 90 percent of access to a .INI file is to a single section (often called “application” in the documentation). By providing a Section property and allowing it to be set, you can avoid having to provide repeated specification of a constant value.

The Section property is used to specify the context for future requests for keys and values. It is a tOString object:

Type

	pIniData = ^tIniData;

	tIniData = Object (tObject)

		Pathname: tOString;

		Sections: tCollection;

		Section: tOString;

		Constructor Init;

			

			

As an object, it must be initialized and destroyed:

Constructor tIniData.Init;

	Begin

	Inherited Init;

	Pathname.Init (fsPathname);

	Sections.Init (5, 10);

	Section.Init (16);

	End;

Destructor tIniData.Done;

	Begin

	Pathname.Done;

	Sections.Done;

	Section.Done;

	Inherited Done;

	End;

Since we don’t know how long a section name might be, we might defer allocating space for one by passing a zero to Section.Init. However, doing so will leave the Section.CString property Nil. As it turns out, the PrivateProfile Windows functions we’ll be using ascribe a special meaning to Nil values for most of the parameters! To prevent this, we initialize Section to a modest 16 bytes.

Although you are syntactically able to assign a section name directly to the Section property, you shouldn’t. This is because the changing of the section name should trigger certain events. For example, assigning a new section name will invalidate the associated list of key names; every section does not contain identically named keys. (We’ll define the Keys collection property in the next section.) The Keys property will be a collection; there will also be a Key property to set the context for the current key, which should become invalid when the Section is set, as well. So, instead of allowing direct change of the Section property, we’ll require that it be changed through a SetSection method:

Procedure tIniData.SetSection (Const aSection: tOString);

	Begin

	Section.SetText (aSection);

	Keys.FreeAll;

	ClearKey;

	End;

Don’t forget to also create SetSectionC and SetSectionP methods for the other two string data types. We haven’t written Keys.FreeAll and ClearKey yet; we will in the next section.

Making It Easy to Internationalize Your Application

In the previous chapter, we discussed how to make exporting your application to another country easier. Primarily, we’ve accomplished this by keeping all display text in the application’s resource pool, where it can easily be swapped for translated strings. But what about the strings that go in your application’s .INI file—shouldn’t they be language customizable, as well?

The answer is “yes, and no.” If you require your users to manipulate the .INI file with a text editor, then certainly the section and key names should be in the language of the user. You can keep strings for these elements in the stringtable, and access it by number, but I have a better idea: don’t ever make your users try to read an .INI file directly. Windows is supposed to be a graphically oriented, user-friendly environment. To keep it that way, make sure your application provides for the setting of all options from one or more language-specific dialog boxes and/or menu items. You can then safely refer to .INI entries in a language you’re happy with, and your users can work with check boxes and edit fields labeled in the language with which they are most comfortable.

Using Keys with Values�tc "Using Keys with Values"�

Each section is composed of one or more keys; each key identifies a single value (although some values may contain more than one related component). Once the Section property is set, we should be able to access a list of keys within that section. And, given a specific key, we must be able to access that key’s value.

Accessing a Collection of Keys�tc "Accessing a Collection of Keys"�

Like Sections, Keys is a collection of entries. But unlike Sections, obtaining the list of Keys will not require programmatic access to the .INI file in question. The Windows API provides access to a list of all keys within a specified section.

The Keys property is very similar to the Sections property. There are even parallel methods:

Type

	pIniData = ^tIniData;

	tIniData = Object (tObject)

		Pathname: tOString;

		Sections: tCollection;

		Section: tOString;

		Keys: tCollection;

			

			

		Procedure RefreshSections;

		Procedure SetSection (Const aSection: tOString);

		Procedure SetSectionC (aSection: pChar);

		Procedure SetSectionP (Const aSection: String);

		Procedure RefreshKeys;

		Procedure SetKey (Const aKey: tOString);

		Procedure SetKeyC (aKey: pChar);

		Procedure SetKeyP (Const aKey: String);

		End;

Initialization and disposal are similar, as well:

Constructor tIniData.Init;

	Begin

			

			

	Sections.Init (5, 10);

			

			

	Keys.Init (20, 10);

	End;

Destructor tIniData.Done;

	Begin

			

			

	Sections.Done;

			

			

	Keys.Done;

			

			

	End;

But the RefreshKeys method is completely different from RefreshSections. That’s because RefreshSections had to read the .INI file using standard Borland Pascal file manipulation procedures, but the Windows API lets you get hold of a list of keys within a section when you provide the section name and filename. File I/O is still taking place, of course, but we don’t have to dirty our hands with it. And, remember, once we’ve accessed the .INI file once, Windows keeps it cached for succeeding accesses.

Procedure tIniData.RefreshKeys;

	Var

		Buffer: Array [0..2048] of Char;

		Ptr: pChar;

		KeyName: pOString;

	Begin

	Keys.FreeAll;

	If Pathname.Length > 0 then

		Begin

		GetPrivateProfileString (Section.CString, Nil, Nil,

			Buffer, SizeOf (Buffer), PathName.CString);

		Ptr := @Buffer;

		While Ptr^ <> #0 do

			Begin

			KeyName := New (pOString, InitTextC (Ptr));

			Keys.Insert (KeyName);

			Ptr := @Ptr[KeyName^.Length + 1];

			End;

		End;

	End;

As with RefreshSections, we are careful to permit invocation of this method even if Pathname has not yet been set. The GetPrivateProfileString API function loads the list into Buffer, a local stack variable. Buffer is a generous 2K in size. There is no way of telling in advance how much space will be needed, so it’s prudent to make Buffer as large as possible without risking stack overflow. (Buffer could safely be made even bigger by allocating it from the global heap, but we won’t get into that just yet.) The key names placed in Buffer use a non-standard delimiter: a NULL character. The end of the list is represented by two adjacent NULLs.

To parse the list, then, we use a pChar Ptr initialized to the beginning of the Buffer. Since a NULL terminates a C-style string, the InitTextC constructor for KeyName copies just enough characters; Ptr can then be moved the same number of characters, plus one, further on. When doing so leaves Ptr still pointing to a NULL, we’ve gotten to the end of the list.

By modifying INITEST1.PAS, we can create a test program that includes the Keys collection. We’ll call it INITEST2.PAS:

Program IniTest1;

	Uses

		WinCRT,

		IniData,

		OString;

	Var

		Ini: tIniData;

		s, k: Word;

		SectionName, KeyName: pOString;

	Begin

	WriteLn ('============== Start ================');

	Ini.Init;

	Ini.SetPathnameC ('WIN.INI');

	Ini.RefreshSections;

	For s := 1 to Ini.Sections.Count do

		Begin

		SectionName := Ini.Sections.At (s - 1);

		WriteLn (SectionName^.CString, '--------------');

		Ini.SetSection (SectionName^);

			Ini.RefreshKeys;

		For k := 1 to Ini.Keys.Count do

			Begin

			KeyName := Ini.Keys.At (k - 1);

			WriteLn (' ', KeyName^.CString);

			End;

		End;

	Ini.Done;

	WriteLn ('============== Done ================');

	End.

Now, indented beneath each section name, will be a list of keys present for that section.

Working with Key, Value, and Default Properties�tc "Working with Key, Value, and Default Properties"�

Like the Section property, the Key property provides a context within which other operations will take place: particularly, retrieving the value for that key. If there does not happen to be an entry for that key in the .INI file, the Default property allows the program to proceed as if there were.

The Key, Value, and Default properties are all tOString objects:

Type

	pIniData = ^tIniData;

	tIniData = Object (tObject)

			

			

		Keys: tCollection;

		Key: tOString;

		Value: tOString;

		Default: tOString;

		Constructor Init;

			

			

The Key property, Section, can have an initial allocation of 16 bytes. Value must also be pre-allocated because the GetPrivateProfileString API function is going to place characters from the .INI file there, and Default must have at least one byte pre-allocated so its CString pointer will not be Nil. Although GetPrivateProfileString will allow the Default argument to point to an empty string, the pointer itself must not be Nil. We’ll actually allocate 16 bytes, which will probably be enough for most default values. (Remember, tOString objects automatically allocate more if needed.)

Initialization, as always, occurs in the Init constructor:

Constructor tIniData.Init;

	Begin

			

			

	Key.Init (16);

	Value.Init (128);

	Default.Init (16);

	End;

And, as always, the properties are disposed of in the Done destructor:

Destructor tIniData.Done;

	Begin

			

			

	Key.Done;

	Value.Done;

	Default.Done;

	tObject.Done;

	End;

When the Key is set, the Value is retrieved:

Procedure tIniData.SetKey (Const aKey: tOString);

	Begin

	Key.SetText (aKey);

	RefreshValue;

	End;

Procedure tIniData.SetKeyC (aKey: pChar);

	Begin

	Key.SetTextC (aKey);

	RefreshValue;

	End;

Procedure tIniData.SetKeyP (Const aKey: String);

	Begin

	Key.SetTextP (aKey);

	RefreshValue;

	End;

Procedure tIniData.RefreshValue;

	Begin

	Value.Length := GetPrivateProfileString (Section.CString,

		Key.CString, Default.CString,

		Value.CString, Value.GetMaxLength,

		Pathname.CString);

	End;

We’ve placed the reading of the value itself in a separate method, because soon we’ll be invoking it from more places than SetKey.

If the specified key, section, or pathname doesn’t exist, there will be no error. Instead, whatever Default you’ve supplied will simply be copied into Value as if it had come from the .INI file. Note that, to use this feature, you’ll have to assign a value to Default prior to invoking the SetKey method.

Finally, occasionally we’ll need to clear the key without supplying a replacement value. The ClearKey method does this, clearing Key, Value, Values, and Default:

Procedure tIniData.ClearKey;

	Begin

	Key.Clear;

	Value.Clear;

	Values.FreeAll;

	Default.Clear;

	End;

Accessing a Collection of Key Values�tc "Accessing a Collection of Key Values"�

The justification for providing a Section property was that an application generally accesses many keys under one section; making it a property kept us from having to re-specify it each time. It’s harder to justify making Key a property. After all, isn’t it used once per value? Not necessarily. Some key values are actually an array of values separated by some delimiter (usually a comma). Without benefit of the tIniData class, a programmer would have to write code to parse these values. To save ourselves this grueling effort, in this section we’ll implement a Values property, a collection of items automatically parsed from the value of Key.

Values is a collection property; to implement it, we also need a Delimiter:

Type

	pIniData = ^tIniData;

	tIniData = Object (tObject)

			

			

		Values: tCollection;

		Delimiter: Char;

		Constructor Init;

			

			

Values must be initialized and destroyed, of course; I recommend an initial count and added count allocation of 5:

Constructor tIniData.Init;

	Begin

			

			

	Values.Init (5, 5);

	Delimiter := #0;

	End;

Delimiter’s initial value is a NULL character, which means no delimiter. Such a value signifies that the key about to be retrieved has just a single value.

Don’t forget to dispose of Values in the Done destructor.

The RefreshValues method copies the contents of Value if Delimiter is NULL, or uses Delimiter to break Value into tokens if it is not:

Procedure tIniData.RefreshValues;

	Var

		V: tOString;

		SubValue: pOString;

	Begin

	Values.FreeAll;

	If Value.Length > 0 then

		If Delimiter = #0 then

			Begin

			SubValue := New (pOString, InitText (Value));

			Values.Insert (SubValue);

			End

		else

			Begin

			V.InitText (Value);

			Repeat

				Begin

				SubValue := V.GetToken (Delimiter);

				If Assigned (SubValue) then

					Values.Insert (SubValue);

				End

			Until not Assigned (SubValue);

			V.Done;

			End;

	End;

To start, we free any items left in Values from before. Then if Delimiter is equal to NULL, we copy Value and insert it as the only member of the Values collection. If, however, there is a character in Delimiter, we copy Value into the local object V (because GetToken actually removes the token from the source tOString) and loop, retrieving tokens and adding them to the Values collection until none are left.

This collection should be refreshed every time the Value is refreshed. Add a call to RefreshValues to RefreshValue:

Procedure tIniData.RefreshValue;

	Begin

			

			

	RefreshValues;

	End;

Likewise, if the Delimiter is changed, the Values must be recalculated. To enable this, we supply a method for changing its contents:

Procedure tIniData.SetDelimiter (aDelimiter: Char);

	Begin

	Delimiter := aDelimiter;

	RefreshValues;

	End;

We’ll create a short program, INITEST3.PAS, to test the Values property. Most developers have at least one serial port in their computer, so this should work for you. One of the sections in WIN.INI is the [ports] section; among others, it includes keys for each of your COM ports. The entry is something like

[ports]

	

	

LPT3:=

COM1:=9600,n,8,1,x

As you can see, the COM1: entry actually contains five values, separated by commas. If the code we’ve just written works, the following program will display each of the five values on a separate line:

Program IniTest3;

	Uses

		WinCRT,

		IniData,

		OString;

	Var

		Ini: tIniData;

		v: Word;

	Begin

	Ini.Init;

	Ini.SetPathnameP ('WIN.INI');

	Ini.SetSectionP ('Ports');

	Ini.SetDelimiter (',');

	Ini.SetKeyP ('COM1:');

	For v := 1 to Ini.Values.Count do

		WriteLn (pOString (Ini.Values.At (v-1))^.CString);

	Ini.Done;

	End.

Writing Values to an .INI File�tc "Writing Values to an .INI File"�

Applications need to put values into an .INI file, as well as take them out. The SetValue and SetValues methods let you insert a single value, as well as a group of delimited values. And, because they are based on the API function WritePrivateProfileString, all the file handling—even the automatic creation of a previously non-existent .INI file—is handled invisibly.

Unlike most files, .INI files are generally accessed as if they were simply a structure in memory. In fact, often they are; Windows caches the most-recently accessed .INI file. This makes .INI access much more efficient, because where there’s one .INI file access, there’s almost always more.

Thus, “setting” a new or changed value should actually change that value on disk as well as in memory. The SetValue methods do just that.

The SetValue methods are invoked anytime after Pathname, Section, and Key have been set. If the file specified by the Pathname property doesn’t exist, it will be created by the call to WritePrivateProfileString. If the section name wasn’t there before, it will be added. If this is the first time this key has been written to this .INI file, that will be taken care of, too. All this from a single API call!

Using a technique we’ve seen before, there is a private SetValue_ method to do most of the work, which is invoked by the public SetValue, SetValueC, and SetValueP methods:

Type

	pIniData = ^tIniData;

	tIniData = Object (tObject)

			

			

		Private

		Procedure SetValue_; Virtual;

		Public

		Procedure SetValue (Const NewValue: tOString);

		Procedure SetValueC (NewValue: pChar);

		Procedure SetValueP (Const NewValue: String);

		Procedure SetValues;

			

			

		End;

Procedure tIniData.SetValue_;

	Begin

	WritePrivateProfileString (Section.CString,

		Key.CString,

		Value.CString,

		Pathname.CString);

	End;

Procedure tIniData.SetValue (Const NewValue: tOString);

	Begin

	Value.SetText (NewValue);

	SetValue_;

	End;

Procedure tIniData.SetValueC (NewValue: pChar);

	Begin

	Value.SetTextC (NewValue);

	SetValue_;

	End;

Procedure tIniData.SetValueP (Const NewValue: String);

	Begin

	Value.SetTextP (NewValue);

	SetValue_;

	End;

You may have noticed the Virtual keyword modifying the SetValue_ method. We’ll be overriding that method soon.

As an alternative to using any of the SetValue methods, you can place a character in the Delimiter property and add as many items as you like to the Values collection. When you are done, the SetValues method will assemble the value items into a single Value (using the Delimiter) and invoke SetValue in turn:

Procedure tIniData.SetValues;

	Var

		Buffer: String;

		v: Word;

		NewValue: tOString;

	Function TotalLengths: Word;

		Var

			L, v: Word;

		Begin

		L := 0;

		For v := 1 to Values.Count do

			Inc (L, pOString (Values.At (v-1))^.Length);

		TotalLengths := L;

		End;

	Begin

	NewValue.Init (TotalLengths);

	For v := 1 to Values.Count do

		Begin

		If v > 1 then

			NewValue.AppendP (Delimiter);

		NewValue.Append (pOString (Values.At (v-1))^);

		End;

	SetValue (NewValue.CString);

	NewValue.Done;

	End;

An interesting sidelight in this method is the use of casting to change an undifferentiated pointer, such as the one returned by the tCollection.At method, into a pOString pointer. Since Value.Append wants a tOString, not a pOString, as its parameter, we end the construct with the caret character to “de-reference” the pointer—that is, refer to the contents of the object to which the pointer points, rather than the contents of the pointer (which is just an address).

Taking Advantage of Polymorphism

Polymorphism is the object-oriented term for one object being accessible as different types. tCollection objects contain polymorphic items, because a tCollection is a collection of tObjects, and virtually any object is a descendent of the tObject class (or should be, if you intend for it to be part of a collection!).

To use polymorphism, specify a pointer to as specific an object class as appropriate. The tCollection.At method returns a pointer to a tObject, but when you use the ForEach method, you can make the pointer parameter to the item handler subfunction a pointer to any class you like. To reference a property or method that only exists in a derivative of that class, cast the pointer to the desired class.

On the other hand, don’t try to cast a pointer to an unrelated class; horrible things will happen.

Polymorphism works because each class derivation adds to the pointers and methods of its ancestor. For example, both tObjects and tIniData objects are stored with pointers to VMTs in exactly the same relative positions. tControl and tXButton objects have hWindow properties stored in the same relative position. When an object is seen as its own ancestor, only the ancestor’s properties and methods are referenced.

By casting, you simply tell the compiler, “It’s all right—I know what I’m doing.” As always, if you’re wrong, you pay the price.

There is a safety net, though. The TypeOf function will help you determine if the object you’re about to cast is, indeed, an object of the class you think it is.

The following short program, INITEST4.PAS, tests SetValue and SetValues. Note that the program writes to the WIN.INI file; don’t forget to remove the entries after. If you forget, five months from now when you next notice them, you won’t have the slightest clue where they came from!

Program IniTest4;

	Uses

		WinCRT,

		IniData,

		OString;

	Var

		Ini: tIniData;

		v: Word;

	Begin

	Ini.Init;

	Ini.SetPathnameP ('WIN.INI');

	Ini.SetSectionP ('I Love Lucy');

	Ini.SetKeyP ('Lucy');

	Ini.SetValueP ('Lucille Ball');

	Ini.SetKeyP ('Ricky');

	Ini.SetValueP ('Desi Arnaz');

	Ini.SetKeyP ('Characters');

	Ini.SetDelimiter (',');

	Ini.Values.Insert (New (pOString, InitTextP ('Fred')));

	Ini.Values.Insert (New (pOString, InitTextP ('Ethel')));

	Ini.Values.Insert (New (pOString, InitTextP ('Lucy')));

	Ini.Values.Insert (New (pOString, InitTextP ('Ricky')));

	Ini.SetValues;

	Ini.Done;

	End.

Supporting Encrypted Values�tc "Supporting Encrypted Values"�

Often, an application designer would like to keep a value in the application’s .INI file, but would prefer that the app’s user not be able to read it. Registration numbers, for example, are often stored this way. With a rudimentary encryption scheme, we can include an EncryptionKey property that, if supplied, will trigger the translation to and from plain text to afford effortless encryption of .INI file values.

By using the Encrypt and Decrypt methods of tOString (supplied on the optional disk and listed in Appendix A), we can add support for encrypted values with just a few extra lines of code.

First, add an EncryptionKey property to tIniData:

Type

	pIniData = ^tIniData;

	tIniData = Object (tObject)

			

			

		EncryptionKey: tOString;

		Constructor Init;

Since, in most cases this property won’t actually contain an encryption key (most .INI entries are not encrypted), we’ll use the minimum constructor and pre-allocate no space:

Constructor tIniData.Init;

	Begin

			

			

	EncryptionKey.Init (0);

	End;

Destructor tIniData.Done;

	Begin

			

			

	EncryptionKey.Done;

	Inherited Done;

	End;

If the EncryptionKey was supplied, we’ll want to decrypt the retrieved value when reading it. The Decrypt method, as implemented in the tOString class, checks that the supplied encryption key actually has some characters in it, so we can call it whenever we refresh the value. This requires another addition to the RefreshValue method:

Procedure tIniData.RefreshValue;

	Begin

	Value.Length := GetPrivateProfileString (Section.CString,

		Key.CString, Default.CString,

		Value.CString, Value.GetMaxLength,

		Pathname.CString);

	Value.Decrypt (EncryptionKey);

	RefreshValues;

	End;

Instead of forcing you to set the EncryptionKey before reading the value, we can free these operations from having to be performed in any particular order by supplying SetEncryptionKey methods:

Procedure tIniData.SetEncryptionKey

		(Const anEncryption: tOString);

	Begin

	EncryptionKey.SetText (anEncryption);

	Value.Decrypt (EncryptionKey);

	RefreshValues;

	End;

Procedure tIniData.SetEncryptionKeyC (anEncryption: pChar);

	Begin

	EncryptionKey.SetTextC (anEncryption);

	Value.Decrypt (EncryptionKey);

	RefreshValues;

	End;

Procedure tIniData.SetEncryptionKeyP

		(Const anEncryption: String);

	Begin

	EncryptionKey.SetTextP (anEncryption);

	Value.Decrypt (EncryptionKey);

	RefreshValues;

	End;

The value must be encrypted just before writing it to the .INI file:

Procedure tIniData.SetValue_;

	Begin

	Value.Encrypt (EncryptionKey);

	WritePrivateProfileString (Section.CString,

		Key.CString,

		Value.CString,

		Pathname.CString);

	Value.Decrypt (EncryptionKey);

	End;

Note that we return the value to plaintext before leaving the method, in case we again want to refer to it internally.

Deleting Keys and Sections�tc "Deleting Keys and Sections"�

The Windows API lets you delete entire sections from a .INI file, or just keys and their values. This allows for effective uninstall routines, or for upgrading to new application versions without leaving the detritus of old versions behind. The DeleteSection and DeleteKey methods add this functionality to the tIniData class.

I mentioned earlier that we had to pre-allocate some space for the Key and Value properties to make sure those tOString objects would not have CString properties equal to Nil. I said that the Private Profile functions ascribed a special meaning to Nil being passed instead of a pointer to a section or key name. Now the truth can be told: that special meaning is a signal to delete.

If the Key property is Nil, WritePrivateProfileString deletes the entire section whose name is supplied. That gives us the DeleteSection method:

Procedure tIniData.DeleteSection;

	Begin

	WritePrivateProfileString (Section.CString,

		Nil,

		Nil,

		Pathname.CString);

	Section.Clear;

	ClearKey;

	End;

Likewise, if the Key is supplied but the Value property is Nil, just the key is deleted:

Procedure tIniData.DeleteKey;

	Begin

	WritePrivateProfileString (Section.CString,

		Key.CString,

		Nil,

		Pathname.CString);

	ClearKey;

	End;

That concludes our implementation of the basic tIniData class. You may remember that there’s one thread left hanging: that we made the SetValue_ method virtual. From that fact, you may have deduced that I intend to derive another class from tIniData—and you’re right—but not until the next section, when we derive the tIniDataX class.

Transactions�tc "Transactions"�

Changes to most files are not made until the file is “saved.” However, .INI files are unusual in that the most common changes are made immediately, and the implementation of the tIniData class reflects this. Still, there are times when changes to an .INI file must be held to be applied at a later time.

Saving the Write until Last with Transactions �tc "Saving the Write until Last with Transactions "�

According to Windows application style, changes made to a file are not “permanent” until the file has been “saved.” This keeps users feeling safe, knowing they can always back out by simply declining to save the changes they’ve made. With the tIniData class, however, no entire .INI file is ever loaded into memory; so, how can the changes be saved and applied all at once? The answer is to store a collection of “transactions”—that is, adds, changes, and deletes—which can be executed at the user’s discretion.

Normally, the mechanism for dealing with transactions would be implemented at the file’s base class. However, .INI files are most often implemented through an Options command, and application options are usually written to the application’s .INI file as soon as they’re specified. The most frequent use, then, of the tIniData class will be to provide instant updates of the application’s .INI file. However, some applications include a Save Configuration command as a separate choice. In that case, the writing of even .INI updates must be delayed. To accommodate both requirements, I’ve chosen to implement both the tIniData class we’ve seen, and the derivative tIniDataX class presented in this section. (The X stands for “transaction,” an old engineer’s abbreviation.)

The only property of its own tIniDataX will add will be the transaction collection. The collection is Private so we can defer the definition of the transaction class until the Implementation section of the unit, thus hiding its details from other units. However, we need to publish the list of transaction types, since a transaction type must be specified for one of the class methods:

Type

	tTranType = (Ini_Add, Ini_Delete);

	pIniDataX = ^tIniDataX;

	tIniDataX = Object (tIniData)

		Private

		Transactions: tCollection;

		Public

		Constructor Init;

		Destructor Done; Virtual;

		Procedure Clear;

		Procedure RefreshSections;

		Procedure RefreshKeys;

		Procedure RefreshValue;

		Procedure SetValue_; Virtual;

		Procedure DeleteSection;

		Procedure DeleteKey;

		Procedure ApplyTransactions;

		Function CanUndoTransaction: Boolean;

		Procedure UndoTransaction

			(

			Var aSection, aKey, aValue: tOString;

			Var aTranType: tTranType

);

		End;

This is the complete definition for the tIniDataX class. You can see which methods had to be augmented over tIniData’s.

The Init and Done methods are as expected:

Constructor tIniDataX.Init;

	Begin

	Inherited Init;

	Transactions.Init (0, 16);

	End;

Destructor tIniDataX.Done;

	Begin

	Transactions.Done;

	Inherited Done;

	End;

The Clear method is just as straightforward:

Procedure tIniDataX.Clear;

	Begin

	Inherited Clear;

	Transactions.FreeAll;

	End;

In each of these methods, all we have to add to the inherited behavior is appropriate management of the new property. Since the property, Transactions, is a standard tCollection object, we haven’t even had to worry about what kind of objects it contains. But before we can implement the RefreshSections method, we’ll have to define the tTran object class:

Type

	pTran = ^tTran;

	tTran = Object (tObject)

		TranType: tTranType;

		Section,

		Key,

		Value: tOString;

		Constructor Init

			(

			aTranType: tTranType;

			Var aSection, aKey, aValue: tOString

);

		Destructor Done; Virtual;

		End;

Constructor tTran.Init

		(

		aTranType: tTranType;

		Var aSection, aKey, aValue: tOString

);

	Begin

	Inherited Init;

	TranType := aTranType;

	Section.InitText (aSection);

	Key.InitText (aKey);

	Value.InitText (aValue);

	End;

Destructor tTran.Done;

	Begin

	Section.Done;

	Key.Done;

	Value.Done;

	Inherited Done;

	End;

As you can see, tTran is a simple structure of section and key names, plus the associated value and a transaction type. There is enough information here to perform each operation the ancestor tIniData class provided, but on a delayed basis.

Now we can look at RefreshSections. The behavior that must be added here is that, after retrieving the list of sections from the .INI file (the original operation), we must run though the list of transactions, adding and deleting sections as needed so the result is the same as it would be after the transactions were applied to the physical file:

Procedure tIniDataX.RefreshSections;

	Procedure Apply (Tran: pTran); Far;

		Function Matches (Item: pOString): Boolean; Far;

			Begin

			Matches := Item^.Matches (Tran^.Section);

			End;

		Var

			Name: pOString;

		Begin

		Case Tran^.TranType of

			Ini_Add:

				If Sections.FirstThat (@Matches) = Nil then

					Sections.Insert (New (pOString,

						InitText (Tran^.Section)));

			Ini_Delete:

				If Tran^.Key.Length = 0 then

					Begin

					Name := Sections.FirstThat (@Matches);

					If Assigned (Name) then

						Sections.Free (Name);

					End;

			End;

		End;

	Begin

	Inherited RefreshSections;

	Transactions.ForEach (@Apply);

	End;

This method contains a nested function within a nested procedure, so it might look a little confusing at first. But it’s really quite simple. There are only two lines of code in the method’s outer block: an invocation of the inherited RefreshSections method, and a direction to the Transactions collection to invoke the nested Apply procedure for each transaction it contains.

The Apply procedure checks the transaction type so it can respond appropriately. If this transaction represents an add operation, it doesn’t matter what key or value may have been the original reason for the add. If the section name contained in the transaction does not already exist in the Sections collection, it must be added; and that’s just what we do.

If, on the other hand, this is a delete operation, we only want to delete a section from the list if the operation was intended to delete an entire section. This will be indicated by a Key of zero length; if so, we delete the section from the list—if it is in there.

The beauty of this technique is that it will work even if the user deleted, then restored, a section name.

The RefreshKeys method is almost identical to RefreshSections:

Procedure tIniDataX.RefreshKeys;

	Procedure Apply (Tran: pTran); Far;

		Function Matches (Item: pOString): Boolean; Far;

			Begin

			Matches := Item^.Matches (Tran^.Key);

			End;

		Var

			Name: pOString;

		Begin

		If Tran^.Section.Matches (Section) then

			Case Tran^.TranType of

				Ini_Add:

					If Keys.FirstThat (@Matches) = Nil then

						Keys.Insert (New (pOString, InitText (Tran^.Key)));

				Ini_Delete:

					If Tran^.Value.Length = 0 then

						Begin

						Name := Keys.FirstThat (@Matches);

						If Assigned (Name) then

							Keys.Free (Name);

						End;

				End;

		End;

	Begin

	Inherited RefreshKeys;

	Transactions.ForEach (@Apply);

	End;

RefreshValue replaces, rather than augments, its inherited behavior:

Procedure tIniDataX.RefreshValue;

	Function Matches (Tran: pTran): Boolean; Far;

		Begin

		Matches := Tran^.Section.Matches (Section) and

			Tran^.Key.Matches (Key);

		End;

	Var

		Tran: pTran;

	Begin

	If (Section.Length > 0) and (Key.Length > 0) then

		Begin

		Tran := Transactions.LastThat (@Matches);

		If not Assigned (Tran) then

			Value.Length := GetPrivateProfileString (Section.CString,

				Key.CString, Default.CString,

				Value.CString, Value.GetMaxLength,

				Pathname.CString)

		else

			Value.SetText (Tran^.Value);

		If EncryptionKey.Length > 0 then

			Value.Decrypt (EncryptionKey);

		End;

	RefreshValues;

	End;

When this method is invoked, we look first at the transaction collection for a record whose section and key matches, starting at the end of the list. That way, if the user has changed this key several times, we’ll get the most recent value. Only if there is no matching transaction do we need to retrieve a value from the .INI file itself. Either way, if an encryption key has been supplied, the retrieved value is decrypted. Finally, the inherited RefreshValues method is invoked.

Now you know why tIniData.SetValue_ was made a virtual method: tIniDataX must override it:

Procedure tIniDataX.SetValue_;

	Begin

	If EncryptionKey.Length > 0 then

		Value.Encrypt (EncryptionKey);

	Transactions.Insert (New (pTran,

		Init (Ini_Add, Section, Key, Value)));

	If EncryptionKey.Length > 0 then

		Value.Decrypt (EncryptionKey);

	End;

Now, instead of writing a newly set value directly to disk, a transaction is created instead. Thanks to the magic of virtual functions, this method will be invoked automatically for tIniDataX objects by the inherited SetValue, SetValueC, and SetValueP methods, without our having to override them.

Likewise, the DeleteSection and DeleteKey methods replace the inherited methods to create appropriate transactions instead of making changes on disk:

Procedure tIniDataX.DeleteSection;

	Begin

	Transactions.Insert (New (pTran,

		Init (Ini_Delete, Section, Empty, Empty)));

	Section.Clear;

	ClearKey;

	End;

Procedure tIniDataX.DeleteKey;

	Begin

	Transactions.Insert (New (pTran,

		Init (Ini_Delete, Section, Key, Empty)));

	ClearKey;

	End;

The Empty object is a pre-defined tOString of zero length supplied by the OString unit. It provides us with an equivalent of the Nil parameter to the WritePrivateProfileString procedure used by the inherited DeleteSection and DeleteKey methods.

Having overridden or augmented the inherited methods, we get to the methods tIniDataX must supply in addition to those. The first of these is ApplyTransactions. This method will be invoked when the user decides it’s time to write the changes he or she has made to disk:

Procedure tIniDataX.ApplyTransactions;

	Procedure Apply (Tran: pTran); Far;

		Begin

		Case Tran^.TranType of

			Ini_Add:

				WritePrivateProfileString (Tran^.Section.CString,

					Tran^.Key.CString,

					Tran^.Value.CString,

					Pathname.CString);

			Ini_Delete:

				If Tran^.Key.Length = 0 then

					WritePrivateProfileString (Tran^.Section.CString,

						Nil,

						Nil,

						Pathname.CString)

				else

					WritePrivateProfileString (Tran^.Section.CString,

						Tran^.Key.CString,

						Nil,

						Pathname.CString);

			End;

		End;

	Begin

	Transactions.ForEach (@Apply);

	Transactions.FreeAll;

	End;

For each stored transaction, the nested Apply function determines the appropriate operation and executes it. As expected, the various operations, whether add or delete, result in a call to WritePrivateProfileString. After all the transactions have been applied, they are removed from the collection and disposed of by the FreeAll method.

A delightful side benefit of the transaction method of dealing with files is that the ability to undo transactions is accomplished with almost no additional effort—just two methods do the trick. The first, CanUndoTransaction, will be used to determine whether the Edit..Undo menu item should be enabled. All it has to do is return True or False, depending on whether any transactions have been added to the collection yet:

Function tIniDataX.CanUndoTransaction: Boolean;

	Begin

	CanUndoTransaction := (Transactions.Count > 0);

	End;

The second actually removes the last transaction from the collection:

Procedure tIniDataX.UndoTransaction

		(

		Var aSection, aKey, aValue:

		tOString; Var aTranType: tTranType

);

	Var

		Tran: pTran;

	Begin

	If Transactions.Count > 0 then

		Begin

		Tran := Transactions.At (Transactions.Count-1);

		aSection.SetText (Tran^.Section);

		aKey.SetText (Tran^.Key);

		aValue.SetText (Tran^.Value);

		aTranType := Tran^.TranType;

		Transactions.AtFree (Transactions.Count-1);

		End;

	End;

In this operation, we can remove the last transaction, but we can’t guess how we’re going to want to restore the state of the caller’s environment. So we just return the transaction’s Section, Key, Value, and transaction type so the caller can deal with them. After all, these are the values the caller gave us when the transaction was created.

