Windows has the reputation of being difficult to program. After all, you hear that it is “message-driven” (whatever that means) and that it has almost a thousand functions in its API (with more in each release!). And then there are those other programmers you may know who have “managed” to learn Windows but found it a thoroughly dreadful, or at least draining, experience.
The problem, though, isn’t Windows: it’s the programmer. If you approach Windows with the idea that it’s “just another graphics library,” you, too, will be jolted by its apparent complexity. If you take apart a complete recording studio under the impression that it is a turntable, that, too, might overwhelm you. But once you understand the breadth of the Windows environment, you’ll be better able to program in it with the proper mind-set.
Ten Things You Should Know about a �Windows Application�tc "Ten Things You Should Know about a �Windows Application"�
The fact that Windows is an entire operating environment affects every aspect of a Windows app—even the format of its executable file. Knowing the differences in the basic structure of Windows apps vs. DOS programs is essential to the completion of a successful Windows project.

1.	A Windows executable (.EXE) file is not like a DOS .EXE file. In fact, a Windows .EXE file contains a DOS .EXE file called a stub program. The usual stub program simply displays a one-line message: “This program requires Microsoft Windows.” Only if you start the program from Windows will the Windows part of the .EXE file run.

2.	In addition to machine code, a Windows .EXE file contains various resources: images of dialog boxes, pictures, icons, menus, and so on. You have to describe those things in a separate, non-programming step, and use a special linker that attaches them to the .EXE. (The Borland Pascal built-in linker does this automatically.)

3.	A BPW Windows program begins execution with the first line of code following the Begin keyword of the program module. This does not automatically create a window!

4.	A DOS program moves under its own thrust; if it wants user input, it must loop until a key is pressed. A Windows application moves only in response to messages, which may come from the keyboard, the mouse, or the system itself.

 5.	A DOS program is written linearly, that is, from top to bottom. Even if it has been broken into many procedures, its main program basically goes from initialize, through process, to terminate. A Windows app is entirely responsive to messages that may arrive in any order. Mostly the messages come in response to user action, such as the push of a button or selection of a menu command.

 6.	The core of a Windows application is therefore the message dispatcher, also known as the message loop. (In an OWL program, the message loop is hidden in the tApplication class, but it’s there, nevertheless.) The body of a Windows application is a message switch; it is from there that all procedures are called. (The message switch is also hidden in OWL; messages result in various Virtual methods being invoked.) The message switch is usually called a window procedure. Think of a window procedure as a set of methods that define the window object.

 7.	The outer areas of a Windows window are handled automatically. This is called the non-client area, and includes the caption bar, menu, minimize and maximize buttons, and the size-adjusting frame. Your program will receive messages when these pieces are manipulated. But the user interface part—the menu’s dropping down, items being highlighted—is done for you by Windows.

 8.	Each individual visual component is called a child window or control. Generally, you can use the two terms interchangeably; if there is a difference, it is that a control is a child window that sends notification messages back to its parent. While each child window has its own window procedure, Windows comes with a set of predefined controls that will satisfy 90 percent of your user interface needs. The predefined controls for Windows 3.1 are the static text, edit box, list box, combo box, check box, radio button, pushbutton, and scroll bar.

 9.	A window is much like an object. Its window procedure defines the methods that respond to the various messages it receives. It can have properties, and you can derive a new window type from an old one that inherits some or all of the ancestor’s methods. For this reason, OWL object classes can be made to represent various window types very cleanly.

10.	Windows applications are meant to run concurrently, but there is no aspect of the Windows 3.1 environment that can enforce this. You could write a linear application in the Windows environment that initialized, processed for an hour, then terminated, but it wouldn’t be a “true” Windows application because it wouldn’t cooperate with the other applications in sharing the system resources. This sharing takes place in between the processing of the various messages. There are ways to share the system if processing a particular message is expected to take an unreasonable amount of time, but you’ll have to implement them deliberately. The processing of most messages doesn’t take that long, anyway.
Writing “Good” Windows Applications versus �“Bad” Windows Applications�tc "Writing “Good” Windows Applications versus �“Bad” Windows Applications"�
Of all the material to cover in a Windows programming book, probably the most important point to stress is how vital it is for you to adhere to the accepted style of a Windows application.
In the old days of programming, whether on mainframes or PCs, every application was a new adventure. When starting the design, you’d ask yourself, “What is the best way I can present control of this application’s functions to the user?” Consistency in user interface was sometimes stressed within companies, but never beyond that: witness Lotus’ lawsuits against competing spreadsheets for copying 1-2-3’s “look and feel.”
Unfortunately, no one benefited from this (least of all Lotus, whose attempts at twisting the Windows application style to their own image have not been applauded by reviewers). The biggest sufferers were the users, who had to learn new rules for each program they operated. Thus, computers got the reputation of being “hard to use.” Computers aren’t hard to use—you just flip a switch and type. It was never computers that were hard to use, it was computer programs; and it was non-standard user interfaces that were largely to blame.
Some people who develop Windows applications don’t understand what Windows really means. To them, it’s just a graphics library like a dozen others that are available for enhancing DOS programs. Or, worse, it’s just a buzzword that will help sell more copies of their products! It saddens me to think of the number of times I’ve been told by marketing departments that following the Windows style “doesn’t matter” because “people will not be running our program at the same time as any others.” If that is true, why program for Windows at all?
The strength of Windows does not come from its user interface or its multi-billion-dollar parentage. It certainly does not come from its bug-free, lightning-like execution! Compared to text-mode DOS, Windows still crawls. But user speed is more important than screen speed, and Windows allows a user to accomplish a given job in a fraction of the time required by a stand-alone DOS application. Windows’ strength comes primarily from its acceptance as an environment in which many applications can run together, sharing functions and information so that they are much more powerful and useful than any application could ever be alone.
Given, then, that the Windows environment is primarily one of multi-tasking, it is important that a new Windows application follow the style of the other programs in that environment in the same way that it is important that a newcomer to a social gathering follow the same style of dress as the other attendees. Wearing a tuxedo to a bowling tournament or tank-top and cut-offs to a New Year’s Eve gala may make a statement, but usually that statement is, “I don’t fit in here—and I don’t care.”
The best way to become familiar with Windows applications is to use them. All the time. Constantly. Never, never go to DOS if you can help it. Your AUTOEXEC.BAT file should start Windows, and you should remove the DOS icon from Program Manager. If you have a DOS program you must run because you don’t have a Windows replacement for it, fine; but create a PIF for it. Don’t let yourself even look at an archaic C> prompt. Especially, this means:

•	Use File Manager for all your file management needs. The speed problems that plagued it in the past have been fixed in Windows 3.1; even the network accesses are now agile. Use drag-and-drop for copying and moving files. Use the online help! You’ll be surprised how easy it is to copy, move, rename, change attributes, manage directories, and so on, when you don’t have to type filenames.

•	Set up Program Manager groups to suit your way of working. Don’t accept the defaults Windows Setup left you with. Better yet, get Norton Desktop for Windows (or another Windows shell) that allows you to have nested program groups. I had to do this; nested projects is the way I work. (I would be happy to deal with my problems one at a time if they would only line up!)

•	Purge your old DOS applications from your hard disk, bundle up the original disks and manuals, and donate them to the church of a religion you don’t like. Then take a deep breath and smile. Today is the first day of the rest of your programming life.
Inside Borland Pascal for Windows�tc "Inside Borland Pascal for Windows"�
Borland Pascal for Windows (BPW) is just part of Borland Pascal with Objects Version 7.0. The full package includes not one, but three compilers, each of which can compile to not one, but three targets:

•	real-mode DOS

•	protected-mode DOS

•	Windows

There is a compiler that runs native to each of these environments so that, even if you feel you must write a DOS program, you won’t have to “shell to DOS” to compile it—or run it! And, although BP lets you compile a Windows application from the DOS command line, I advise against it. As I said earlier in the chapter, you can’t learn the Windows style if you aren’t immersed in it. When the Borland Pascal with Objects installation program asks, tell it to install just the Windows-based IDE (Integrated Development Environment). Whether you want it to include libraries for DOS or protected-mode DOS as well as for Windows is between you and your client base. What consenting adults do behind closed computer-room doors is their business.
Getting the Most from BPW�tc "Getting the Most from BPW"�
Earlier in this chapter, I covered ten important general Windows programming issues you should consider before you start developing Windows applications with BPW. In addition to these issues, you’ll want to consider a few techniques for using BPW and Borland’s Object Windows Library (OWL), so that you can get the most benefit out of BPW’s object-oriented features.
BPW File Types�tc "BPW File Types"�
When working with Borland Pascal with Objects, there are several different types of files you’ll need to be aware of. Though most of them are easily identified by unique extensions, the three types of source code files all have an extension of .PAS—at least, until they are compiled.
•	Program file: source code extension .PAS, compiled extension .EXE. The source code is identified by virtue of the Program keyword as the first non-comment word in the file. If your goal is to produce a Windows application, it will include exactly one program file.

•	Unit file: source code extension .PAS, compiled extension .TPU, .TPP, or .TPW. (The extension identifies the target environment: DOS, protected-mode DOS, or Windows, respectively.) The source code is identified by the Unit keyword as the first non-comment word in the file. All but the most trivial projects should be divided into several units. Part of the skill of programming in BPW is knowing how to divide a project into appropriate units; we’ll be working on building that skill as we go along.

•	Library file: source code extension .PAS, compiled extension .DLL. The source code is identified by the Library keyword as the first non-comment word in the file. If your goal is to produce a Windows Dynamic Link Library (DLL), it will include exactly one library file.

•	Resource file: source code extension .RC, compiled extension .RES. If you build your resources using the Resource Workshop that comes with Borland Pascal version 7.0, you can skip the source code step and produce .RES files directly.

•	Include file: source code extension .INC. These files are a leftover from an older Pascal, before Borland introduced units. They allow sequences of code to be included in more than one .PAS file. There isn’t much use for them anymore, except that the Resource Workshop supports use of constants from .INC files if you are creating an .RC file. In our examples, we will be going direct to .RES, so you won’t see any include files here.

•	Turbo Pascal Unit Library file: extension .TPL. There is only one of these, and it contains the various units that are part of Turbo Pascal for Windows, such as the System Unit, the WinProcs Unit, and the Strings Unit. If you are feeling adventurous, you can use the TPUMOVER program to add one or more of your own units to this library. I’ve never seen any benefit from this, and we won’t do it in this book.
Graduating from Records to Objects�tc "Graduating from Records to Objects"�
You can hardly write a traditional Pascal program without records. Records are straightforward and easy to understand, and they have equivalents in almost any language you might have used before Pascal. Objects, on the other hand, look intimidating. But the two are more similar than you may have guessed.
1.	An Object is very much like a Record. The main difference is that an object includes pointers to procedures and functions, as well as data. You usually describe a record structure using a Type statement first, then allocate space for one of those records with a Var statement. The same holds true for objects. The description defines an object class; a Var statement creates the actual object.

2.	You can create a pointer to a record in a Var statement, then allocate the space later with the New function. The same is true of objects.

3.	A data item in a record is called a field. A data item in an object is called a property. (Although sometimes in the BPW documentation they slip and refer to properties as fields, too.)

4.	The procedures and functions associated with an object are called methods. If you created a new record type, you might code special procedures to deal with that record type. That’s just what an object’s methods are for. By packaging them together as an inseparable object, they remain conveniently associated.

5.	Methods for one object class can have the same names as methods for another object class. The compiler will make sure the appropriate code is invoked.

6.	If you have an existing object class that does 90 percent of what you want (or 50 percent or 10 percent), you can derive a new object class from it. You’ll only have to add enough properties and/or methods to it to get the behavior you want. You can also override methods that are inappropriate in the descendent class. This is called inheritance.

7.	Record structures can, themselves, contain record structures. Objects can contain other objects as properties. (They can also contain record structures.)

8.	Normally, Pascal is extremely type sensitive, and this extends to record types. However, objects possess a trait called polymorphism. If a procedure is expecting a parameter of object class A, and object class B is descended from A, you can pass an object of class B to it. Most objects in OWL are descended from class tObject. You can also make collections of generic objects.

9.	It’s best if you try not to tread a line between object-oriented programming (OOP) and conventional programming. Break each component of your project into an object, and design it as a “black box.” As time goes by, you’ll find yourself more able to reuse object classes and save yourself work. A program that is composed of one giant object is not “object-oriented.”

10.	Don’t hesitate to derive a new class, even if you will need to override most of the methods. The BPW built-in linker is smart enough to omit the code you don’t use from the final .EXE file. (There is an exception to this rule, which you will see in Chapter 5.)
BPW Coding Style�tc "BPW Coding Style"�
The success or failure of any program does not depend on whether the Begins and Ends line up with the Procedure keyword or are indented from it. It helps if you can be consistent, but programs can have as many different styles as prose or poetry. �As long as you’re clear and precise, there is no reason why you shouldn’t develop your own programming style.
BPW and Turbo C++ for Windows are both programming environments for object-oriented languages. (Visual Basic is reminiscent of an object-oriented language, but does not fill all the requirements.) In object-oriented languages, a class refers to a particular type of object, with specific properties and methods. As with any programming technique, OOP is not a magic lozenge that will cure all ills, find all bugs, and bring peace to the Middle East. But if a class is designed with a certain amount of—well, class��—it can be remarkably reusable, giving you a tool you can refine through the years. Instead of having to treat each program as an utterly new invention, you’ll be able to simply assemble each assignment, mostly from classes you’ve already developed.
To achieve reusability, the classes you create must be powerful enough to be useful, yet simple enough to create and maintain. Many of the old programming rules, which were invented by COBOL or C programmers trying to avoid mass suicide, should not be imposed on the Borland Pascal programmer.
In this book, we’ll use the following coding conventions:

•	There are few, if any, comments. Instead, blocks of code that might otherwise be unclear are broken into nested procedures whose names tell you what they do.

•	I never skimp on names, either variable or procedure. I only have to type a method once, but I may have to read it many times.

•	Hungarian Notation: forget it. This came from the same country that gave us the Gabor sisters, which should give you a clue right there. Putting unpronounceable letters in front of a variable does not make its meaning clearer. Pronounceable letters are even worse; they can change the meaning of the word itself. Hungarian Notation became popular with C, which performs inadequate type checking. Its use is superfluous in Pascal (or any other modern language), so leave it alone. The exceptions, of course, are Windows record structures whose elements have been prenamed by those prefix freaks at Microsoft.

•	In some circles, it is popular to prefix a variable with a few letters identifying the record or object of which it is a member. This originated with COBOL, where the technique enables the programmer to use a field name without fully qualifying it. In Pascal, you either fully qualify the member name, or make it part of a With statement. Either way, its family affiliations are clear, so the prefix is redundant and, like Hungarian Notation, obscures the meaning of the variable name.

•	There is one traditional prefix with which I agree. Type definitions are a special case, because so often the most descriptive name for a variable descriptor—a Type—is the same I would want to give a variable of that type. Turbo Pascal tradition places the letter “t” in front of simple type definitions, and the letter “p” in front of pointer definitions. Tradition also would have you type these prefixes in uppercase, but I do not. Since my variable names always begin with a capital letter, that at least makes the t or p look like a prefix, and not part of a word.

•	I don’t type reserved words in all caps. The Borland Pascal editors display them in boldface, so the difference should be clear. Capital letters do not a keyword make. They can only signify my intention. BPW, on the other hand, by bolding keywords for me, actively lets me know that I’ve either done what I intended to do, or that I’ve make a mistake.

Finally, I use my own style of indentation. (I have always found it ironic that, no sooner were compilers invented which freed programmers from having to line code up into certain columns, than Coding Standards departments appeared, forcing programmers to line code up into certain columns.) Personally, I prefer the following constructs:

�xe "MyProc, Procedure_"�Procedure MyProc;
	�xe "{, Begin Program code }_End_"�Begin
	{ Program code }
	End;

�xe "SomeCondition, If then_Begin_{ Program code }_Endel_"�If SomeCondition then
	Begin
	{ Program code }
	End
else
	Begin
	{ Program code }
	End;

My feeling is that if you indent differently and, as a result, you cannot understand a program indented any other way, you’ve been programming too long—you’ve got to get out more.
Use Common Property and Method Names�tc "Use Common Property and Method Names"�
When creating extensions to OWL, you should make every effort to be consistent with the OWL classes themselves. For instance, each class should support an Init constructor; control classes should also have an InitResource constructor.
When a class method performs a function for that class that is similar to a function performed by a method of another class, keep the same name. The point is to have to memorize as little as possible when you actually come to use these classes. Try to be consistent and use a naming convention that will make it easy for you to remember method and property names.

