Only a few years ago, computer programs were written by teams of programmers, with user-interface specialists, JCL experts, database administrators, and so on offering additional support. In spite of the best efforts of these programming armies, the products they produced were hard to learn and hard to use. Now programs with ten times the power are being crafted with one-tenth the people, and users are claiming the new applications are not only easy to learn, but fun to use.

What happened? Microsoft Windows, of course. With Windows, programming, the face of computing has changed forever. The tools for computer users are now so much more powerful than before that, after sampling them, almost no one wants to go back.

The tools for Windows programmers have been slower to advance. Even now, as of this writing, the primary Windows compiler from the company who invented Windows is not, itself, a “Windows application.” Fortunately, other companies have been eager to catch the thrown gauntlet. Borland’s Turbo Pascal for Windows and Turbo C++ for Windows have been acclaimed as the premiere Windows programming environments by one reviewer after another. Borland Pascal with Objects Version 7.0 takes BPW a giant step forward, even letting you create DOS applications from within the comfortable, productive, Windows environment.

For Turbo Pascal programmers in particular, it’s about time! When Windows was first released, Microsoft claimed it could be programmed in either Microsoft C or Microsoft Pascal, but the Pascal support was at best anemic. Of all the example programs in the Windows System Development Kit (SDK), only one was written in Microsoft Pascal. That example was dropped from the Windows 3.0 SDK, presumably because Microsoft had discontinued its Pascal compiler.

But Borland stepped in and in late 1990 produced Turbo Pascal for Windows, of which I was one of the beta testers. While I appreciated BPW’s brilliance at the start—the idea of a Windows-hosted compiler, for Heaven’s sake!—it was OWL, the ObjectWindows Library, that really excited me. Programming for Windows had always required a major shift in mind-set from traditional mainframe and PC programming, but here Borland was making the jump to Windows an easy one for anyone already accustomed to programming in object-oriented Turbo Pascal.

The creators of OWL had to settle on a compromise, however: where to stop? If the native Windows API is the foundation of the house, should OWL be the first floor? The attic? The roof?

Borland decided to make OWL the frame of the house, and I think this was a wise decision. Starting out with OWL, you can create almost any kind of Windows program you can imagine: text editors, drawing programs, databases, utilities, and on and on.

However, it has been my experience that the vast majority of real programs I have to write are all based on the same premise: a main window that consists of a dialog box with the same old menu (File, Edit, and so on). From OWL I have created new, descendent classes that bring me as close to that generic dialog application as I can get and still be able to create “real” applications by descending from those. It is on those classes that this book concentrates.

Who This Book Is For�tc "Who This Book Is For"�

If you:

•	are already familiar with Turbo Pascal, or at least some Pascal

•	use Borland Pascal with Objects version 7.0, or of Turbo Pascal for Windows version 1.5

•	have Windows 3.1 installed

•	want to create Windows applications quickly and easily

•	would like to know as much about Windows and BPO as possible without making your head hurt,

this book is for you.

Features of This Book�tc "Features of This Book"�

This book is both an instructional and a reference book. You will probably want to work with it from beginning to end. But, afterward, it will help you to quickly research particular topics or refresh yourself on an unusual technique. This book is designed with this kind of easy access in mind.

Each chapter contains several major topics, such as “Menus and Commands.” For each topic, we first provide some general information, then the topic is broken down further into subtopics, with each subtopic describing a particular concept in more detail or showing you how to use a particular feature or solve a specific problem. Each subtopic begins with an informative heading, followed by a few brief sentences (printed in bold italic type) that tell you quickly what you can expect to learn by reading through the rest of the material in the topic.

Hot Tips

We’ve also included several Hot Tips throughout each chapter. Each Hot Tip provides you with information you can use to solve some of the more sticky Windows problems or to put to use some little-known techniques every Turbo Pascal for Windows programmer should know.

The INSIDER Disk

A disk is available (see back of the book for details) that contains all of the units and programs described in these pages. Some programmers prefer to type examples in themselves, but others prefer to load a copy from disk; we accommodate them all. The diskette is arranged by chapter so you can easily find the code you want. In addition, we’ve put some utilities on disk which you may find useful. These utilities are discussed throughout the book. Just look for the “On Disk” icon.

About the Author�tc "About the Author"�

Paul S. Cilwa has worked with Microsoft Windows since version 1.0, and programmed it from version 2.03. He helped beta test versions 3.0 and 3.1, as well as the first release of Turbo Pascal for Windows. As a technical writer, his in-depth research and clarity of presentation have made his articles in PC Techniques a favorite to readers. His humorous fiction has appeared in the St. Augustine Traveler and Changing Men magazine. When not writing, he is a consultant to leading East Coast firms as an expert in Microsoft Windows programming.

Cilwa was born in New Jersey but has also lived in Vermont, Florida, Virginia, and Nebraska. Currently, he resides in New Hampshire with his computer, his 46" television set, and his youngest daughter, Jennifer.

