Heaven knows creating a good online help text for the Windows Help Engine is complex enough. But, to add insult to injury, entwining access to that help throughout the various components of your application is even worse. To do the job right, you need the following:

•	a status bar

•	a Help menu command (which also responds when you push the F1 key)

•	a help mode (in which the mouse cursor changes to a pointer with a question mark, and is then used to identify toolbar components or retrieve helpful information regarding any control on a dialog box)

•	context-sensitive help (in which the help screen that appears is apropos to the current dialog box or the control on that dialog box that happens to have the Windows input focus)

As always, the answer to dealing with this complexity is to create an object class, in which the methods and properties define the components in portions small enough and defined clearly enough to manage.

Implementing a Status Bar�tc "Implementing a Status Bar"�

A status bar is the simplest way a user can be guided through the intricacies of your applications. It can also be the simplest to implement, if you are writing an ObjectWindows program.

At its most basic, a status bar is simply a static child window, usually placed at the bottom of the dialog box or window whose status is of interest. From there, it can report a variety of information to the user. Frequently, status bars are used to suggest appropriate actions the user could take with the control that currently has the focus. In a simple application, that may be all the online help that’s needed!

Using the tHelp Class�tc "Using the tHelp Class"�

The tHelp class starts out as a rather simple class derived from tXStatic. Its power will come from where and when it is invoked.

The trick to using the tHelp class is incorporating it into the Controls unit we created last chapter. If you are keeping a separate subdirectory for each chapter (as we have done on the accompanying disk), you’ll want to copy CONTROLS.PAS into the CHAP08 subdirectory.

Eventually, the tHelp class will be derived from a custom control all its own. But for now, as mentioned, it will be derived from tXStatic. Therefore, immediately following the definition of tXStatic in the Controls unit, add the following:

Type

	pHelp = ^tHelp;

	tHelp = Object (tXStatic)

		Constructor Init

			(

			aParent: pWindowsObject;

			anID: Word;

			X, Y, W, H: Integer

);

		Constructor InitResource

			(

			aParent: pWindowsObject;

			anID: Integer

);

		Destructor Done; Virtual;

		End;

Later, we’ll add a couple of properties to the class. For now, though, the constructors have just one task to do other than invoke the ancestor constructors:

Constructor tHelp.Init

		(

		aParent: pWindowsObject;

		anID: Word;

		X, Y, W, H: Integer

);

	Begin

	Inherited Init (aParent, anID, '', X, Y, W, H, 128);

	DisableTransfer;

	End;

Constructor tHelp.InitResource

		(

		aParent: pWindowsObject;

		anID: Integer

);

	Begin

	Inherited InitResource (aParent, anID, 128);

	DisableTransfer;

	End;

The DisableTransfer invocation turns off the transfer mechanism. This is a technique used to easily pop information in and out of controls in a dialog box. By default it is enabled. We’ll never use this mechanism for tHelp controls, though; so we have to turn it off.

Don’t forget to register the class:

Const

	rHelp: tStreamRec =

		(

		ObjType: 8001;

		VmtLink: Ofs (TypeOf (tHelp)^);

		Load: @tHelp.Load;

		Store: @tHelp.Store

);

			

			

Begin

RegisterType (rXStatic);

RegisterType (rHelp);

			

			

End.

When we add control of the Windows Help Engine later, we’ll revisit the tHelp class. But for now, using it to instantiate a status bar, this is really all we need! Remember, since it was derived from tXStatic, it already is able to load text from the application resources. It only needs to be told to do so; and in the next section, we’ll teach the other controls how to perform that trick.

Adding Status Information to the Controls Unit�tc "Adding Status Information to the Controls Unit"�

Most of the controls in the Controls unit can receive input focus. The control can react to this event if it has a wmSetFocus method. In this section, we’ll add that method and a pointer to the tHelp object to each control.

tXStatic, tHelp’s ancestor, is one of two standard controls that cannot receive the input focus. This is fortunate; if we had to add a pointer in the tXStatic class to a tHelp object, we would get a circular reference between the two. As it is, though, placing the tHelp definition in position after tXStatic makes for a nice progression, because all but one of the class definitions that now follow tHelp will contain a pointer to that class.

The other class that does not receive the focus is tXGroupbox. For each of the other controls in the Controls unit, we’ll need to add a pointer to a tHelp object:

Type

	pXButton = ^tXButton;

	tXButton = Object (tButton)

		str_ID: Word;

		Help: pHelp;

			

			

When we created the Controls unit, we did not have to supply constructors for all the controls because we did not give all of them str_ID properties. If a control has no properties of its own, it doesn’t need its own constructor. But now that we’ve given a Help property to all the controls that didn’t have properties before, they’ll have to have constructors, as well.

We’re going to make the Help property an optional one, though, to be set after the control’s constructor has been invoked; so we won’t need to change any of the constructors’ calling sequences. Each Init and InitResource method definition can be copied from the online help text for that control, so we won’t even have to type much. Just add the line

Help := Nil;

to each existing constructor. Then, where required, create new constructors that follow this pattern:

Constructor tXScrollbar.Init

		(

		aParent: pWindowsObject;

		anId: Integer;

		X,Y,W,H: Integer;

		IsHScrollBar: Boolean

);

	Begin

	Inherited Init (aParent, anID, X, Y, W, H, IsHScrollBar);

	Help := Nil;

	End;

That is, invoke the inherited constructor and assign Nil to the Help property.

Since the controls do not own the tHelp pointer, we don’t need to add any Done destructors. But we will require Load and Store methods for each:

Constructor tXButton.Load (var S: tStream);

	Begin

	Inherited Load (S);

	S.Read (str_ID, SizeOf (str_ID));

	GetSiblingPtr (S, Help);

	End;

Procedure tXButton.Store (var S: tStream);

	Begin

	Inherited Store (S);

	S.Write (str_ID, SizeOf (str_ID));

	PutSiblingPtr (S, Help);

	End;

Some of the controls, such as tXButton, had Load and Store methods already. But they all need them now for the invocation of the GetSiblingPtr and PutSiblingPtr methods. As you’ll recall from the last chapter, these methods match pointers to other controls that share the dialog.

We could allow ourselves to set the Help properties by simple assignment, for instance:

MyButton.InitResource (@Self, id_Button);

MyButton.Help := @MyHelp;

But it will be more in accordance with good object-oriented design if we supply a SetHelp method to each control:

Type

	pXButton = ^tXButton;

	tXButton = Object (tButton)

		str_ID: Word;

		Help: pHelp;

			

			

		Procedure SetHelp (aHelp: pHelp);

		End;

			

			

Procedure tXButton.SetHelp (aHelp: pHelp);

	Begin

	Help := aHelp;

	End;

So far, all we’ve seen is preparation for the payoff: actually getting the status bar to display any text of interest. The first challenge is: how can we automatically associate a control with explanatory text? Fortunately, the answer is simple: give each line of explanatory text a string ID equal to the resource ID of the control itself. For example, if a certain pushbutton’s ID was 1002, then string 1002 could describe when to click the button.

Given that technique, we only have to add a method to each control type that will set the text of the Help property whenever that control receives the input focus. That method must be a handler for the wm_SetFocus message:

Type

	pXButton = ^tXButton;

	tXButton = Object (tButton)

		str_ID: Word;

		Help: pHelp;

			

			

		Procedure SetHelp (aHelp: pHelp);

		Procedure wmSetFocus (var Msg: tMessage);

			Virtual wm_First + wm_SetFocus;

		End;

			

			

Procedure tXButton.wmSetFocus (var Msg: tMessage);

	Begin

	If Assigned (Help) then

		Help^.SetTextR (Attr.ID);

	DefWndProc (Msg);

	End;

The call to DefWndProc points out a difference between dynamic methods and other types. If a derived class overrides an existing dynamic method, the ancestor method should be invoked in the usual way, using the inherited keyword. Often, however, there is no ancestor method, as such, at the ObjectWindows level. Beneath that, at the native Windows level, there is still processing that must take place. This is invoked from ObjectWindows, using one of the following:

•	DefWndProc: for messages offset from wm_First

•	DefCommandProc: for messages offset from cm_First

•	DefDlgProc: used instead of DefWndProc in objects that descend from tDialog

•	DefChildProc: for messages offset from id_First

•	DefFrameProc: used instead of DefWndProc in objects that represent MDI frame windows

•	DefMDIChildProc: used instead of DefWndProc in objects that represent MDI document windows

•	DefNotificationProc: for messages offset from nf_First

Messages sent to controls should be handled by DefWndProc, as done previously.

The Attr.ID property is inherited from the tWindowsObject ancestor. We use the value directly to select the string ID of the text to be displayed in the status bar, and voilà! The status bar will track whichever control has the focus, with no further effort on our part.

Adding a Status Bar to INI Editor�tc "Adding a Status Bar to INI Editor"�

We can demonstrate the new tHelp class in the INI Editor by adding a tHelp object to the tDlgAppWindow class, adding a physical static control to the dialog itself, adding the descriptive text to the application resources, and making the Sections, Keys, and Value properties Help-aware.

The first step, if you are segregating the work of each chapter, is to copy INIEDIT.PAS, DLGAPP.PAS, SECTIONS.PAS, KEYS.PAS, VALUES.PAS, SMARTCMB.PAS, and INIEDIT.RES into the CHAP08 directory. Next, double-click on INIEDIT.RES to start the Resource Workshop. Select the MAIN dialog resource, extend the dialog boundary downward just a bit, and add a static control that runs along the base of the dialog. Give the control an ID of 9999; that will be our status bar. (We’ll worry about making it pretty later.)

Next, while still in the Resource Workshop, you add a stringtable. By default, the Resource Editor will number the first string 1. But you’ll want to change that number to 1001 to match the first control on the INI Editor dialog, the Sections combo box. Add the following lines (presented here in Edit as Text format):

STRINGTABLE LOADONCALL MOVEABLE DISCARDABLE

BEGIN

	1001, "Select an existing section, or type a new section name to �	 add it to the list."

	1002, "Click to add a new section, or to delete an existing �	 section."

	1003, "Select an existing key, or type a new key name to add it to �	 the list."

	1004, "Click to add a new key, or to delete an existing key."

	1005, "The value of the indicated section and key; you may type a �	 new value and click the Change button."

	1006, "Type an optional encryption key to prevent users from �	 reading the true value."

	1007, "Type a one-character delimiter to break the Value into �	 components."

	1008, "Click to change the current value to the new value you've �	 typed."

	1009, "The subvalues contained in Value, as marked by the Delimiter �	 character."

END

The decimal number 1008 happens to fall on a divisible-by-sixteen boundary, so the Resource Editor will automatically place these entries in two stringtables: one titled 1001 and the other titled 1008. Because of the limitations of the printed page, some of the lines of text may have been split into more than one printed line, but in reality each string must be entered in its entirety on a line with its ID.

You can now save your enhancements and close Resource Workshop, then load SMARTCMB.PAS into BPW.

The tSmartCombo class is derived from tXCombobox; its Command property is derived from tXButton. Both of these ancestors have now had Help added to them. We still need to supply the connection between the tSmartCombo object and its property, however. As it now stands, invoking tSmartCombo.SetHelp will attach a help object to the combo box, but not to the associated command button. We can fix that by adding a SetHelp method to tSmartCombo:

Procedure tSmartCombo.SetHelp (aHelp: pHelp);

	Begin

	Inherited SetHelp (aHelp);

	Command^.SetHelp (aHelp);

	End;

We must similarly tie together Sections, Keys, and Values. In SECTIONS.PAS, add the following method:

Procedure tSections.SetHelp (aHelp: pHelp);

	Begin

	Inherited SetHelp (aHelp);

	Keys.SetHelp (aHelp);

	End;

In KEYS.PAS, you must supply a similar method:

Procedure tKeys.SetHelp (aHelp: pHelp);

	Begin

	Inherited SetHelp (aHelp);

	Value.SetHelp (aHelp);

	End;

VALUES.PAS is a little more work because it defines several classes. Each class that owns another as a property must supply a SetHelp method to propagate the effect. Fortunately, there are only two that fit this requirement:

Procedure tValues.SetHelp (aHelp: pHelp);

	Begin

	Inherited SetHelp (aHelp);

	Delimiter.SetHelp (aHelp);

	End;

Procedure tValue.SetHelp (aHelp: pHelp);

	Begin

	Inherited SetHelp (aHelp);

	Command.SetHelp (aHelp);

	Encryption.SetHelp (aHelp);

	Values.SetHelp (aHelp);

	End;

We’ll add the Help property to tDlgAppWindow:

Type

	pDlgAppWindow = ^tDlgAppWindow;

	tDlgAppWindow = Object (tDlgWindow)

	BaseCaption: tOString;

	DataFile: tDataFile;

	FileSaveMenu: tMenuItem;

	Help: tHelp;

		

		

	End;

Constructor tDlgAppWindow.Init;

	Begin

	Inherited Init (Nil, 'MAIN');

	BaseCaption.Init (0);

	DataFile.Init;

	Help.InitResource (@Self, id_Help);

	End;

Destructor tDlgAppWindow.Done;

	Begin

	BaseCaption.Done;

	DataFile.Done;

	FileSaveMenu.Done;

	Help.Done;

	Inherited Done;

	End;

Finally, we edit the tMainDlg class in INIEDIT.PAS to start the ball rolling with the Sections property:

Constructor tMainDlg.Init;

	Begin

	Inherited Init;

	Ini.Init;

	Sections.InitResource

		(

		@Self,

		@Ini,

		@DataFile.Dirty,

		id_Sections,

		id_SectionCommand,

		id_Keys,

		id_KeyCommand,

		id_Value,

		id_Encryption,

		id_Delimiter,

		id_ValueCommand,

		id_Values

);

	Sections.SetHelp (@Help);

	End;

Run the application and tab from field to field. You’ll see the status bar track the description of the field with the focus.

I hope you’re properly impressed. Prior to ObjectWindows, it was not unusual to spend days adding to an existing application what we just implemented in minutes. Object-oriented programming may not be the final solution to all programming problems, but when used to create a solid foundation like ObjectWindows and then expanded, it sometimes seems like it!

Enhancing Your Status Bar�tc "Enhancing Your Status Bar"�

Traditionally, status bars are gray rectangles that look like inversed buttons, appearing to “sink into” the screen. Also, whereas the default text on a dialog is boldfaced, status bar text usually is not. We can easily add two of these effects without having to create a custom control.

To make our status bars more stylish, we’ll first change the font. By adding a SetupWindow method to tHelp, we’ll be able to send a wm_SetFont message to the static control. Of course, first we’ll have �to create the font we want the control to use:

Procedure tHelp.SetupWindow;

	Var

		OldFont: hFont;

		LogFont: tLogFont;

	Begin

	Inherited SetupWindow;

	OldFont := hFont (SendMessage (hWindow, wm_GetFont, 0, 0));

	GetObject (OldFont, SizeOf (LogFont), @LogFont);

	LogFont.lfWeight := fw_Regular;

	SendMessage (hWindow,

		wm_SetFont, CreateFontIndirect (LogFont), 0);

	End;

This deceptively simple-looking method actually implements a powerful technique. To begin with, the wm_GetFont message sent to the tHelp window (via its window handle) returns a different kind of handle: a handle to a font. The font is the one the static help control would have used by default, the one we specified for the dialog box as a whole. Often, when you want a new font, you want one that is similar to a font you already have. That’s the case here; we just want a regular version of what is probably a boldfaced font. So, given the handle to the default font, we simply retrieve the font details by using GetObject, and then modify them.

The tLogFont structure contains a wealth of information regarding the default font—almost more than you’d want to know. One of the fields specifies the “weight” of the chosen font; that is, the thickness of the lines with which the characters are drawn. Weights are numeric, but Windows has supplied a set of constants you can use to specify the weight of choice. If we checked, we’d probably find that the lfWeight field contained 700, the value of the fw_Bold constant. We don’t want to change anything else, so all we have to do is replace that value with fw_Regular. We then create a new font based on the modified specifications, and send the font to the window—all in one motion.

Our next task is to change the background color. The way to do this is simple; we just add a method to tDlgAppWindow:

Procedure tDlgAppWindow.wmCtlColor (var Msg: TMessage);

	Begin

	If Msg.lParamLo = Help.hWindow then

		Begin

		SetBkMode (Msg.wParam, transparent);

		Msg.Result := GetStockObject (LtGray_Brush);

		End

	else

		DefWndProc (Msg);

	End;

The wm_CtlColor message is sent to the owner of a control whenever it’s about to be drawn. This technique is perfectly acceptable when dealing with controls that are unique to a given dialog, but we would prefer to encapsulate all of tHelp’s behavior, including its appearance, into the class itself, so its behavior and appearance will be consistent and automatic.

Even though the technique is a kludge, we can recolor the static control that is at the heart of the status bar. But we won’t be able to draw beveled edges without access to the control’s paint routines, which is tricky to get. Most status bars are implemented with custom controls. The technique we’ve just seen shows how far you can get without them!

Setting Up Help Mode�tc "Setting Up Help Mode"�

The general guideline from the Common User Access guide (on which the Windows Style Guide is based) is that applications should avoid “modes”—that is, states in which the program does not behave as usual. However, if a mode must be used, it should be clearly marked by a special mouse cursor. The CUA guide then blesses help mode as a reasonable exception to the no-modes rule. By invoking the tHelp class’s SetHelpMode method, you can automatically set the mouse cursor and a flag that the application command and control handlers can query to determine what action to take: standard or help mode.

Monitoring the F1 Key�tc "Monitoring the F1 Key"�

It is appropriate for Windows applications to associate commands with key combinations, and Windows supports this with accelerator key resources. When the user presses Ctrl-F1, the application is thrown into help mode; when the user clicks the mouse, the application returns to normal.

We’ve had a Ctrl-F1 accelerator key defined in the DlgSkel resource file ever since Chapter 3. It was given a command ID of 998. If you look at DLGAPP.PAS, you’ll find we’ve already provided a constant for that command: cm_HelpMode.

A cmHelpMode command method should be defined as:

Type

	pDlgAppWindow = ^tDlgAppWindow;

	tDlgAppWindow = Object (tDlgWindow)

			

			

		Procedure cmHelpMode (var Msg: tMessage);

			Virtual cm_First + cm_HelpMode;

		End;

Procedure tDlgAppWindow.cmHelpMode (var Msg: tMessage);

	Begin

	Help.SetHelpMode;

	End;

Of course, tHelp doesn’t actually have a method by this name, yet. We’ll have to give it one. The first requirement is a HelpMode property. Also, since we have to change the mouse cursor when we’re in help mode, we need a place to keep the old cursor so we can restore it:

Type

	pHelp = ^tHelp;

	tHelp = Object (tXStatic)

		OldCursor: hCursor;

		HelpMode: Boolean;

		

		

	Constructor Load (var S: tStream);

	Procedure SetHelpMode;

	Procedure ClearHelpMode;

	Procedure wmLButtonDown (var Msg: tMessage);

		Virtual wm_First + wm_LButtonDown;

	Procedure wmMouseMove (var Msg: tMessage);

		Virtual wm_First + wm_MouseMove;

	End;

As usual, we’ll have to initialize these properties in the constructors—at least, one of them. By the nature of the code we’re going to write, OldCursor can truly never be accessed until after it’s been given a value; so we only have to set HelpMode to False:

Constructor tHelp.Init

		(

		aParent: pWindowsObject;

		anID: Word;

		X, Y, W, H: Integer

);

	Begin

	Inherited Init (aParent, anID, '', X, Y, W, H, 128);

	HelpMode := False;

	DisableTransfer;

	End;

Constructor tHelp.InitResource

		(

		aParent: pWindowsObject;

		anID: Integer

);

	Begin

	Inherited InitResource (aParent, anID, 128);

	HelpMode := False;

	DisableTransfer;

	End;

We’ll also need a Load constructor to initialize this property:

Constructor tHelp.Load (var S: tStream);

	Begin

	Inherited Load (S);

	HelpMode := False;

	End;

We won’t need a Store method because we are not going to store the mode flag. Whenever a tHelp object is created, it will start in normal mode.

The SetHelpMode method is the only place that flag is ever set to True:

Procedure tHelp.SetHelpMode;

	Begin

	HelpMode := True;

	SetCapture (hWindow);

	OldCursor := SetCursor (LoadCursor (hInstance, 'HelpMode'));

	End;

The flag, of course, is only a marker. Help mode actually begins when the status bar captures all mouse input. This means that, even if the mouse is pulled beyond the edges of the application window—even if the user tries to click on another application—it won’t matter. All mouse messages will come to the status bar.

Since the application is in a special mode, according to CUA guidelines the mouse cursor should change appearance. There is no standard cursor for help mode, so we’ll have to add a custom cursor to a new resource file, CONTROLS.RES. I’ve borrowed the help mode cursor from Excel and modified it a bit, as shown in Figure 8.1.

� INCLUDEPICTURE F:\\INSIDER\\FINAL\\FIG08-01.TIF * MERGEFORMAT ���

Figure 8.1 The help mode cursor.

To make sure the new cursor is available to applications which use the tHelp class, add a reference to the resource file at the top of CONTROLS.PAS:

Unit Controls;

	(***)

								Interface

	(***)

	

	{$R Controls.RES}

	

	Uses

					

					

In my version, the question mark is “inverted” rather than black, so it will show up even if the cursor is passed over a black background.

The cursor should be named “HelpMode.” The SetCursor function returns a handle to the previous cursor; we save the handle so we can restore the old cursor with the ClearHelpMode method:

Procedure tHelp.ClearHelpMode;

	Begin

	ReleaseCapture;

	SetCursor (OldCursor);

	HelpMode := False;

	End;

At this point, we’ll also release the mouse cursor. The whole time the mouse is captured, keyboard input is also disabled. Therefore, the only user events that the application can receive are mouse messages, and only the tHelp object can get them. The most important of these, in terms of getting back control of the computer, is the wm_LButtonDown message:

Procedure tHelp.wmLButtonDown (var Msg: tMessage);

	Begin

	If HelpMode then

		ClearHelpMode;

	End;

Don’t try to test before you’ve put this method in place! Without it, the only way you’ll be able to regain access to Windows is to reboot your computer.

With what we have so far, we’re able to go into help mode (by pressing Ctrl-F1), see the cursor change, then return to normal by clicking the left mouse button. With one more tHelp method and one method to each control, we’ll be able to see the description for each control by simply passing the mouse cursor over it.

The tHelp method is wmMouseMove. Remember, once we invoke SetCapture, all mouse movement messages will come here:

Procedure tHelp.wmMouseMove (var Msg: tMessage);

	Procedure CheckSibling (aControl: pControl); Far;

		Begin

		If aControl <> @Self then

			SendMessage (aControl^.hWindow,

				wm_NcHitTest, 0, Msg.lParam);

		End;

	Begin

	ClientToScreen (hWindow, tPoint (Msg.lParam));

	If HelpMode then

		Parent^.ForEach (@CheckSibling);

	End;

wm_MouseMove messages provide, in Msg.lParam, the client coordinates of the mouse position. We want to query every other control on the dialog to see if it is the one over which the mouse cursor is located. We can do this with our parent’s ForEach method, which acts on the collection of child windows the way tCollection.ForEach acts on the collection’s elements. In this case, the CheckSibling nested procedure makes a quick check to avoid tHelp’s sending a message to itself, then sends a wmNcHitTest message to the child window.

This method is remarkably safe. All windows are accustomed to receiving wm_NcHitTest messages all the time. Whenever the user does anything with the mouse, Windows sends the wm_NcHitTest message first. Most windows rely on the default processing for this message, which simply determines whether the supplied screen coordinates happen to correspond to the location of the window being queried or not.

To generate a legal wm_NcHitTest message from our wm_MouseMove message, we only have to convert the latter’s client coordinates into screen coordinates, using the ClientToScreen procedure. Screen coordinates begin with point 0, 0 at the upper-left corner of the screen, while client coordinates place point 0, 0 at the upper-left corner of the application window’s client area. Child windows always inherit the client coordinate system of their parents.

It is quite possible that we’ll send wm_NcHitTest messages to windows that are not hooked into the tHelp system; but there’s no harm if we do. These windows will just ignore the messages and continue their usual processing.

But look at the wmNcHitTest method for tXButton:

Procedure tXButton.wmNcHitTest (var Msg: tMessage);

	Begin

	DefWndProc (Msg);

	If (Msg.Result = htClient) and

			Assigned (Help) and

			Help^.HelpMode then

		Help^.SetTextR (Attr.ID);

	End;

The first thing this method does is invoke the default processing, which will place a value into the Msg.Result field. An application window, which also receives these messages, is quite complex—with its caption, minimize and maximize buttons, scroll bars, and so on—so there are many possible values wm_NcHitTest can return. But the only one we’re interested in is htClient. If the mouse is positioned over the tXbutton’s client area, and the Help property points to a tHelp object that is in help mode, then wmNcHitTest sets the text of the Help object, just as it does when it gets the input focus in normal mode.

We then need to supply identical methods for each of the controls that has a Help property.

At this point, you can test the help mode: run INI Editor and press Ctrl-F1. Immediately, the cursor will change to the arrow-and-question mark. Pass the cursor over each of the controls, and the status bar will tell you what that control is for. Click the left mouse button, and the cursor and program function will return to normal.

Accessing the WinHelp Engine�tc "Accessing the WinHelp Engine"�

Any Windows application more complex than Clock should provide its users with online help. Although most applications still come with manuals, the fact is you probably don’t have nearly enough desk space for a manual on every application you use. Windows applications with online help alleviate the paper glut and are more convenient at the same time.

Although you are free to supply online help in any form you please, the majority of Windows applications take advantage of the Windows Help Engine (WINHELP.EXE). This application provides hypertext links, graphics, formatted text, and indexing. You can even expand Version 3.1 of WinHelp by using its built-in macros and your own DLLs.

As powerful as the Windows Help Engine is, though, no one has completely solved the problem of writing the help files themselves. The original text must be stored in Microsoft’s Rich Text Format, which not many word processors support. The hypertext links, index keys, and topic names are stored as “footnotes” with special reference characters; text formatting such as double underlines and hidden text are used to mark the location of hypertext jumps.

Help File for INI Editor

An entire book could be devoted to the subject of creating useful help files. This, however, is not that book. Therefore, we’ve supplied a ready-made help file for INI Editor. Copy INIEDIT.HLP from the \CHAP08 directory.

In this section, we’re going to add WinHelp access to the tHelp class.

The Help Commands�tc "The Help Commands"�

Help..Contents, Help..Using Help, and Help..Topic Search are all commonly encountered Help commands, which can be found in the default menu of DLGSKEL.RES. By adding appropriate methods to the tHelp class, and implementing command methods in tDlgAppWindow, we can provide this level of online help with just a few lines of code.

The Windows Help Engine, whose executable is named WINHELP.EXE, is accessed entirely through the Windows API call WinHelp. The function’s Command parameter lets you specify what it is you want the engine to do.

The first requirement for using the Windows Help Engine is to supply WinHelp with the name of the help file. tHelp will have to pass this filename as a parameter with every call, so it will have to be stored as a property:

Type

	pHelp = ^tHelp;

	tHelp = Object (tXStatic)

		OldCursor: hCursor;

		HelpMode: Boolean;

		Pathname: tOString;

			

			

		Procedure SetPathname (const aPathname: tOString);

		End;

The constructors will initialize this property to an empty string:

Constructor tHelp.Init

		(

		aParent: pWindowsObject;

		anID: Word;

		X, Y, W, H: Integer

);

	Begin

	Inherited Init (aParent, anID, '', X, Y, W, H, 128);

	HelpMode := False;

	DisableTransfer;

	Pathname.Init (0);

	End;

Constructor tHelp.InitResource

		(

		aParent: pWindowsObject;

		anID: Integer

);

	Begin

	Inherited InitResource (aParent, anID, 128);

	HelpMode := False;

	DisableTransfer;

	Pathname.Init (0);

	End;

The Done destructor finally gets something interesting to do. This is our first call to WinHelp:

Destructor tHelp.Done;

	Begin

	If Pathname.Length > 0 then

		WinHelp (Application^.MainWindow^.hWindow,

			Pathname.CString, help_Quit, 0);

	Pathname.Done;

	Inherited Done;

	End;

If a Pathname was supplied, WinHelp may have been invoked. We don’t know, but that’s all right. The function was designed to allow invoking it with the help_Quit flag, whether the Help Engine was actually started or not. On the other hand, if the engine was started, we must call WinHelp with the help_Quit flag. That’s how the Help Engine knows to shut down automatically when your application terminates.

WinHelp requires a handle to a window; we supply the handle of the application’s main window. Notice we have designed tHelp so that it can be used in contexts other than tDlgAppWindow.

Since tHelp now has a property whose value would need to be preserved if a tHelp object were streamed, we have to load that property in the Load method. We’ll also need an explicit Store method:

Constructor tHelp.Load (var S: tStream);

	Begin

	Inherited Load (S);

	Pathname.Load (S);

	HelpMode := False;

	End;

Procedure tHelp.Store (var S: tStream);

	Begin

	Inherited Store (S);

	Pathname.Store (S);

	End;

The SetPathname method provides a way for us to give the property a value:

Procedure tHelp.SetPathname (const aPathname: tOString);

	Begin

	Pathname.SetText (aPathname);

	End;

The four most common uses of the Help Engine are:

1.	To view the help file index.

2.	To view the “Help on Help” file.

3.	To provide context-sensitive help.

4.	To display the topic search dialog.

Each of these is accomplished with a different command to the WinHelp function. For example, the help_Contents command is used to display the index:

Procedure tHelp.ShowIndex;

	Begin

	If Pathname.Length > 0 then

		WinHelp (Application^.MainWindow^.hWindow,

			Pathname.CString, help_Contents, 0);

	End;

This method will start the Help Engine (if it isn’t already running), load the help file whose name is stored in Pathname (if it isn’t already loaded), and display the contents screen. (This was called the “Index” screen in Windows 3.0.) For protection, we don’t attempt to invoke WinHelp unless a Pathname has been supplied; the Windows Help Engine will crash if Pathname.CString is equal to Nil. If, on the other hand, Pathname contains the name of a file, but WinHelp can’t find it, WinHelp informs the user.

WinHelp has the built-in ability to describe how it should be used. Most applications with a full Help menu label this Using Help. tHelp supplies a method to access this function:

Procedure tHelp.UsingHelp;

	Begin

	If Pathname.Length > 0 then

		WinHelp (Application^.MainWindow^.hWindow,

			Pathname.CString, help_HelpOnHelp, 0);

	End;

The ShowContext method, which starts the Help Engine off at a particular topic to provide context-sensitive help, repeats the trick we used to associate status bar text with a particular control. In the help file, each topic is usually assigned a number, and is then accessed by that number instead of by name. By giving topics numbers that match the number of the control the text describes, we can provide context-sensitive help with no more effort than this:

Procedure tHelp.ShowContext;

	Begin

	If Pathname.Length > 0 then

		WinHelp (Application^.MainWindow^.hWindow,

			Pathname.CString, help_Context, str_ID);

	End;

Obviously, this means that you can’t casually change a control ID without changing the topic number in the help file. But for that small cost, the benefit in code simplicity is amazing.

The final tHelp method is TopicSearch. This method starts WinHelp in its search mode, in which a dialog box is presented to the user with a list of index keys and topics. It’s the same dialog you can start manually from WinHelp by clicking on the Search button. The WinHelp help_PartialKey command actually allows you to specify the text of a key, which WinHelp will then locate if it can. But, by passing an empty string to WinHelp, we can get the search dialog to appear instead:

Procedure tHelp.TopicSearch;

	Const

		Empty: Char = #0;

	Begin

	If Pathname.Length > 0 then

		WinHelp (Application^.MainWindow^.hWindow,

			Pathname.CString, help_PartialKey, LongInt (@Empty));

	End;

That concludes tHelp’s WinHelp enhancements. All that remains to tie them into the IniEdit application is to enhance tDlgAppWindow to take advantage of them.

The first improvement we have to make is to send the Help property the name of a help file. Although it would be all right for INIEDIT.PAS to specify a hard-coded filename, we would like tDlgAppWindow to calculate a filename, so as to remain generic. Therefore, we supply a virtual method called GetHelpFileName:

Procedure tDlgAppWindow.GetHelpFileName;

	Var

		HelpFileName: tOString;

	Begin

	HelpFileName.Init (fsPathname);

	GetModuleFileName (hInstance,

		HelpFileName.CString,

		HelpFileName.GetMaxLength);

	HelpFileName.RecalcLength;

	HelpFileName.Leftmost (HelpFileName.Length-3);

	HelpFileName.AppendP ('HLP');

	Help.SetPathname (HelpFileName);

	HelpFileName.Done;

	End;

In this method, the Windows API function GetModuleFileName returns the name of the application’s executable file, whatever that might be. The name will be fully qualified, including drive letter and path. Given this name, we can generate an appropriate help filename for 99 percent of all applications by merely removing the .EXE extension and replacing it with .HLP.

We made this method virtual for the other one percent of the time. If it is not appropriate, the object class derived from tDlgAppWindow can simply override the method. If there is no help file, for example, the overriding method will contain no code between Begin and End.

GetHelpFileName is invoked by tDlgAppWindow.Init:

Constructor tDlgAppWindow.Init;

	Begin

	Inherited Init (Nil, 'MAIN');

	BaseCaption.Init (0);

	DataFile.Init;

	Help.InitResource (@Self, id_Help);

	GetHelpFileName;

	End;

Finally, we can add the command handlers that tie the application menu commands to the tHelp methods that make WinHelp work:

Type

	pDlgAppWindow = ^tDlgAppWindow;

	tDlgAppWindow = Object (tDlgWindow)

			

			

		Procedure GetHelpFileName; Virtual;

		Procedure cmHelpIndex (var Msg: tMessage);

			Virtual cm_First + cm_HelpIndex;

		Procedure cmHelpUsingHelp (var Msg: tMessage);

			Virtual cm_First + cm_HelpUsingHelp;

		Procedure cmHelpContext (var Msg: tMessage);

			Virtual cm_First + cm_HelpContext;

		Procedure cmHelpTopicSearch (var Msg: tMessage);

			Virtual cm_First + cm_HelpTopicSearch;

		End;

Procedure tDlgAppWindow.cmHelpIndex (var Msg: tMessage);

	Begin

	Help.ShowIndex;

	End;

Procedure tDlgAppWindow.cmHelpUsingHelp (var Msg: tMessage);

	Begin

	Help.UsingHelp;

	End;

Procedure tDlgAppWindow.cmHelpContext (var Msg: tMessage);

	Begin

	Help.ShowContext;

	End;

Procedure tDlgAppWindow.cmHelpTopicSearch (var Msg: tMessage);

	Begin

	Help.TopicSearch;

	End;

That’s all it takes. Run the resulting program and try out the help commands. They really work!

Also, don’t miss the fact that we made no changes to INIEDIT.PAS to bring online help to INI Editor. To supply online help for your next application:

•	Include the appropriate Help menu items.

•	Supply the help file (admittedly the hardest part).

•	Make sure the topic numbers and control IDs match.

With no further effort on your part, your application will have context-sensitive, online help.

What If You Don’t Want a Status Bar?

The tHelp class is based on a status bar. If, for some aesthetic reason, you do not want a status bar, create one anyway, then uncheck Visible on the control options dialog.

