Chapter 13

ObjectWindows Printing

Much has been written about printing graphics in Windows, but too little attention has been paid to the kind of printing we do most--that of text. Fortunately, ObjectWindows supplies several classes we can build on to make printing reports a breeze.

In this chapter we're going to build a name and address application which will print envelopes and sheets of labels. Along the way we'll learn about creating and sizing fonts and using dialog boxes to obtain information from the user; we'll also make final enhancements to several of the units we've built and apply much of what we've learned in previous chapters to the creation of a real-life, useful application.

Designing Addressatron

Most of us have used the Cardfile applet that comes with Windows to store names and addresses. It's "autodial" feature is a special blessing for those of us who can't remember numbers long enough to dial them. But, let's face it; Cardfile's abilities are limited.

Addressatron is intended to supply address-management features Cardfile lacks. It will used fixed fields to store the data (rather than Cardfile's free form), thus lending itself to programmatic manipulation. It will store and dial five different phone numbers, a mailing label, and a salutation and closing suitable for letters.

Designing Addressatron's Main Dialog

Addressatron's main dialog must provide space for a person's name, address, five phone numbers, and a salutation and closing.

The main dialog for Addressatron is shown in Figure 13.1.

�EMBED MSPowerPoint \s * mergeformat���

Figure 13.1. Addressatron's main dialog.

Reflecting the application's many features, the menu provides 21 commands and 3 nested dropdowns:

MAIN MENU PRELOAD MOVEABLE DISCARDABLE

BEGIN

	POPUP "&File"

	BEGIN

		MENUITEM "&New", 101

		MENUITEM "&Open...", 102

		MENUITEM "&Save", 103

		MENUITEM "Save &as...", 104

		MENUITEM SEPARATOR

		POPUP "&Print"

		BEGIN

			MENUITEM "&Envelope", 105

			MENUITEM "&Mailing Labels", 110

			MENUITEM "&Return Address Labels", 111

		END

		POPUP "&Page se&tup"

		BEGIN

			MENUITEM "&Envelope", 106

			MENUITEM "&Mailing Labels", 112

			MENUITEM "&Return Address Labels", 113

		END

		MENUITEM "P&rinter setup...", 107

		MENUITEM SEPARATOR

		MENUITEM "E&xit", 24340

	END

	POPUP "&Edit"

	BEGIN

		MENUITEM "&Copy", 202

	END

	POPUP "&Search"

	BEGIN

		MENUITEM "&Find...", 301

		MENUITEM "&Next\tF3", 302

	END

	POPUP "&Options"

	BEGIN

		POPUP "&Port"

		BEGIN

			MENUITEM "Com&1:", 501

			MENUITEM "Com&2:", 502

			MENUITEM "Com&3:", 503

			MENUITEM "Com&4:", 504

		END

		MENUITEM "Set &Return Address", 505

	END

	POPUP "&Help"

	BEGIN

		MENUITEM "&Procedures", 904

		MENUITEM SEPARATOR

		MENUITEM "&About...", 999

	END

END

In addition to the usual file extension strings, the string table supplies a couple of application-specific strings to support autodialing and searches:

STRINGTABLE LOADONCALL MOVEABLE DISCARDABLE

BEGIN

	500, "Addressatron Lists|*.adr|All Files(*.*)|*.*|"

	501, "adr"

	502, "Do you want to save the changes you've made to "

	503, "(Untitled)"

	504, "You cannot drag more than one file to this application at a time."

	505, "You cannot drag a subdirectory to this application."

	13001, "Pick up your phone and click \042OK\042 after your number has dialed."

	13002, "String not found: "

END

The "\042" component of string 13001 is a double quote. Since the strings are, themselves, double-quoted, this escape mechanism is required to allow double quotes to be embedded in a string.

In contrast to the number of controls and menu commands, the Accelerator table is rather modest:

MAIN ACCELERATORS PRELOAD MOVEABLE

BEGIN

	VK_F3, 302, VIRTKEY

	VK_F4, 303, VIRTKEY

	VK_F1, 901, VIRTKEY

	VK_F1, 998, VIRTKEY, CONTROL

	VK_F1, 997, VIRTKEY, SHIFT

END

There are other, supporting dialogs, but we'll look at those together with the code that drives them. That leaves the icon as the last resource; it's shown in Figure 13.2.

� INCLUDEPICTURE F:\\INSIDER\\FINAL\\FIG13-02.TIF * MERGEFORMAT ���

Figure 13.2. The Addressatron icon.

Enhancing Supporting Units

As we've proceeded through project after project, we've had many occasions to enhance units we'd created for an earlier project; Addressatron is no exception. We'll add a collection class to the OString unit and a Printer object to the tDlgAppWindow class.

Adding A Sorted tOString Collection to the OString Unit

Users of C-style strings can sort a collection of them by assigning them to an object of the tSortedStrCollection class. The tSortedOCollection will provide users of tOStrings the same ability.

If you are separating units by chapters, create a \CHAP13 directory and copy the OString unit from Chapter 2 into it. Then add the following Type definition:

	Type

		pSortedOCollection = ^tSortedOCollection;

		tSortedOCollection = Object (tSortedCollection)

			Function Compare (Key1, Key2: Pointer): Integer; Virtual;

			Function Find (Key: pOString): pOString;

			End;

ObjectWindows' tSortedCollection class is cleverly designed; in order to create a sorted collection for a specific class it is only necessary to replace one or two abstract methods. The KeyOf method provides a pointer to a key; the default method assumes the key if the first property of the object and therefore return's the object's address. That's true in the case of a tOString since the whole object will be used as a key. The Compare method allows you to inspect two of these keys and determine which should precede the other:

	Function tSortedOCollection.Compare (Key1, Key2: Pointer): Integer;

		Var

			K1: pOString absolute Key1;

			K2: pOString absolute Key2;

		Begin

		If K1^.IsBefore (K2^) then

			Compare := -1

		else if K1^.Matches (K2^) then

			Compare := 0

		else

			Compare := 1;

		End;

The variable declarations for K1 and K2 demonstrate an alternative to casting Key1 and Key2 to pOStrings directly. The effect is identical; a variable declared with the absolute keyword takes up no additional data space. It's up to you to determine which will read more clearly when you come back to look at the code a month or year later.

In addition to Compare I've added a Find method. Given a pointer to a tOString that had already been added to the collection, the standard IndexOf method would locate the object in the collection. Find, in contrast, searches for an object whose contents match, not necessarily its address. Search is part of tSortedCollection and makes use of the Compare method we've already supplied, making the Find method quite simple:

	Function tSortedOCollection.Find (Key: pOString): pOString;

		Var

			Index: Integer;

		Begin

		If Search (Key, Index) then

			Find := At (Index)

		else

			Find := Nil;

		End;

The functions of Search and Find are quite similar. I like Find because it's syntax is consistent with At and other tCollection functions which return either a pointer to the desired object, or Nil.

Finally, don't forget to register the new class:

	Const

		rSortedOCollection: tStreamRec =

			(

			ObjType: 13001;

			VmtLink: Ofs (TypeOf (tSortedOCollection)^);

			Load: @tSortedOCollection.Load;

			Store: @tSortedOCollection.Store

);

				Ú

				Ú

	Begin

	RegisterType (rOString);

	RegisterType (rSortedOCollection);

				Ú

				Ú

	End.

Adding a Printer Object to the DlgApp Unit

ObjectWindows supplies a tPrinter class which encapsulates the behavior of any printer physically connected to Windows. An object of this class is required by the tPrintout class we'll be using shortly.

The tPrinter class is defined in the OPrinters unit; so the first step in adding an object of this class to the tDlgAppWindow class is to add OPrinters to the DlgApp unit's Uses clause:

	Uses

		WinTypes,

		WinProcs,

		Objects,

		OWindows,

		ODialogs,

		WinDos,

		OString,

		Datafile,

		Menus,

		ShellAPI,

		Win31,

		Controls,

		ClpBoard,

		Wait,

		OPrinter;

The next step is to add such an object to the tDlgAppWindow definition, as well as a method definition and an exported procedure:

	Type

		pDlgAppWindow = ^tDlgAppWindow;

		tDlgAppWindow = Object (tDlgWindow)

				Ú

				Ú

			Printer: tPrinter;

				Ú

				Ú

			Procedure cmFilePrinterSetup (var Msg: tMessage);

				Virtual cm_First + cm_FilePrinterSetup;

			End;

	Procedure SetPageMapMode (DC: hDC);

The new object must be initialized and disposed of in the usual ways:

	Constructor tDlgAppWindow.Init;

		Begin

		Inherited Init (Nil, 'MAIN');

				Ú

				Ú

		Printer.Init;

		End;

	Destructor tDlgAppWindow.Done;

		Begin

				Ú

				Ú

		Printer.Done;

		Inherited Done;

		End;

All along we've had a command ID for performing printer setup, but we've never supplied a handler for that command. Now we can; and it's a one-liner because the tPrinter class supplies a Setup method that does the whole job for us:

	Procedure tDlgAppWindow.cmFilePrinterSetup (var Msg: tMessage);

		Begin

		Printer.Setup (@Self);

		End;

The procedure we must add to tDlgAppWindow is SetPageMapMode. It's only a few lines long, but requires some explanation. First, the code:

	Procedure SetPageMapMode (DC: hDC);

		Var

			Extents: LongInt;

		Begin

		SetMapMode (DC, mm_LoEnglish);

		SetMapMode (DC, mm_Anisotropic);

		Extents := GetViewportExt (DC);

		SetViewPortExt (DC,

			LoWord (Extents), -Integer (HiWord (Extents)));

		End;

Because we've dealt almost exclusively with dialog boxes and text in this book, we've had to worry very little about mapping modes. In fact, the last time we talked about them was during a graphics discussion back in Chapter 12, when we were trying to draw a calendar page for an OLE presentation.

Windows supplies several different mapping modes, but two of them, mm_Isotropic and mm_Anisotropic, provide the most flexibility. For writing text on a page, the easiest way for us as English-speakers to address points on the page is to use a mapping mode in which measurements are in fractions of an inch, and in which the X coordinates increase in value as they move toward the right and the Y coordinates increase in value as they move toward the bottom of the page.

Unfortunately, there are no ready-made mapping modes which provide this. However, the mm_LoEnglish mapping mode divides the page into units of 0.01", which is plenty of resolution for placing things on screen. (This resolution is used only for placement; characters and art will still be displayed in as fine a resolution as the printer can support.)

But, although the measurements are appropriate, the directions aren't. In mm_LoEnglish, as in most of Windows' mapping modes, the point 0, 0 is located at the bottom left of the page. We can reset that point using SetViewportOrg but values for Y will still want to decrease as we move down the page.

So we turn to mm_Anisotropic map mode to save the day. mm_Anisotropic always inherits the origin and extents of the previous mapping mode; so by switching to mm_LoEnglish first, then to mm_Anisotropic, we ensure that the new mapping mode will retain hundredth-inch units. All that's left is to swap the direction in which the Y coordinate increases, and we have "Page Map Mode," custom made for placing text on screen or page. To make use of it, just supply the procedure with the device context you'll be using to write the text.

Building Addressatron

Even without the ability to print, Addressatron offers an impressive array of features--all of which need to be coded. Addressatron provides access to dozens or hundreds of addresses and phone numbers, and dials the numbers or copies onto the Clipboard a skeleton personal letter suitable for pasting into your favorite Windows word processor.

Handling Phone Numbers

Even a casual glance at the Addressatron dialog template reveals a pattern of radio buttons, phone numbers and extensions. This pattern can be more easily managed by encapsulating it as an object class.

The pattern of option button, phone number and extension is such that we would want to decompose this portion of Addressatron into a separate object anyway. But this is the second time we've dealt with phone numbers and it's not likely to be the last. Why not build tPhone into a unit that at least has the potential of being reused?

Copy the CLASSKEL.PAS file as PHONES.PAS and give it the following Interface section:

Unit Phones;

	(***)

						Interface

	(***)

	Uses

		WinTypes,

		WinProcs,

		Objects,

		OWindows,

		Validate,

		OString,

		DlgApp,

		Controls,

		Modem;

	Const

		str_ClickAfterDial = 13001;

	Type

		pPhone = ^tPhone;

		tPhone = Object (tXEdit)

			Option: pXOption;

			ExtLabel: pXStatic;

			Ext: pXEdit;

			Constructor InitResource

				(

				aParent: pWindowsObject;

				anID: Integer;

				anOptionID: Word;

				anExtLabelID: Word;

				anExtID: Word

);

			Destructor Done; Virtual;

			Procedure Clear;

			Procedure Check;

			Procedure Uncheck;

			Function IsChecked: Boolean;

			Function IsValid: Boolean;

			Procedure Changed (var Msg: tMessage);

				Virtual nf_First + en_Change;

			Procedure Dial (aPort: Word);

			End;

The str_ClickAfterDial ID will be used to access a message string in the resource pool.

One thing you'll notice we've done differently here than in other classes: instead of making the control objects direct properties of the tPhone class, the properties are pointers to those objects. This is a part of our effort to make this a reusable class. Not all phone numbers need extensions; not all uses of tPhone will require option buttons. By storing pointers to these optional components, and initializing the pointers of unsupplied objects to Nil, we can easily manage each possibility.

Within the Implementation section we'll put the definition of tPhoneValidator, which we not export:

	Type

		pPhoneValidator = ^tPhoneValidator;

		tPhoneValidator = Object (tPxPictureValidator)

			Function IsValidInput

				(var S: String; SuppressFile: Boolean): Boolean; Virtual;

			End;

	Function tPhoneValidator.IsValidInput

			(var S: String; SuppressFile: Boolean): Boolean;

		Var

			Result: Boolean;

		Begin

		Result := Inherited IsValidInput (S, SuppressFile);

		If not Result then

			MessageBeep (0);

		IsValidInput := Result;

		End;

This is the same class we wrote for the SetTime applet, last chapter.

We aren't going to bother with an Init constructor; if we ever need one we can write it. For the Addressatron application (or any other app based on tDlgAppWindow) we only need an InitResource constructor. The parameters to it are primarily the IDs of the three potential controls. However, we've taken into account the possibility that any of them but the actual phone number may be omitted:

	Constructor tPhone.InitResource

			(

			aParent: pWindowsObject;

			anID: Integer;

			anOptionID: Word;

			anExtLabelID: Word;

			anExtID: Word

);

		Begin

		Inherited InitResource (aParent, anID, 15);

		SetValidator (New (pPhoneValidator,

			Init ('{;1;-###;-###;-####},{###;-####}', True)));

		If anOptionID > 0 then

			Option := New (pXOption, InitResource (aParent, anOptionID))

		else

			Option := Nil;

		If anExtLabelID > 0 then

			ExtLabel := New (pXStatic,

				InitResource (aParent, anExtLabelID, 4))

		else

			ExtLabel := Nil;

		If anExtID > 0 then

			Ext := New (pXEdit, InitResource (aParent, anExtID, 4))

		else

			Ext := Nil;

		End;

Note that we've given the extension labels IDs and made them controls, as well, even though they are just static child windows. That's so we can disable them when we disable the extension edit control. An empty, disabled edit control presents little visual cue that it is disabled. We can supply an additional cue by graying the "Ext:" label.

The destructor must only disposed of objects which have been created:

	Destructor tPhone.Done;

		Begin

		If Assigned (Option) then

			Dispose (Option, Done);

		If Assigned (ExtLabel) then

			Dispose (ExtLabel, Done);

		If Assigned (Ext) then

			Dispose (Ext, Done);

		Inherited Done;

		End;

The Clear method performs for the group of controls what Clear methods do for single controls; it removes any contents they may have:

	Procedure tPhone.Clear;

		Begin

		Inherited Clear;

		If Assigned (Option) then

			Option^.SetCheck (0);

		If Assigned (Ext) then

			Ext^.Clear;

		End;

Since tPhone includes an option button, it will be convenient to provide Check, Uncheck and IsChecked methods:

	Procedure tPhone.Check;

		Begin

		If Assigned (Option) then

			Option^.SetCheck (1);

		End;

	Procedure tPhone.Uncheck;

		Begin

		If Assigned (Option) then

			Option^.SetCheck (0);

		End;

	Function tPhone.IsChecked: Boolean;

		Begin

		If Assigned (Option) then

			IsChecked := (Option^.GetCheck = 1)

		else

			IsChecked := False;

		End;

Note that each of these methods may be safely invoked whether there is actually an associated option button or not, because they check to see if the pointer to the option button is Nil before using it.

Any object based on tEdit has an IsValid method, but the default method always returns True. When a Validator object is added, as we've done, IsValid returns a valid from the Validator. However, an empty control is considered valid. We'll want a simple way to determine if a valid phone number is present, so we override IsValid and check for length as well:

	Function tPhone.IsValid: Boolean;

		Begin

		IsValid := (Length > 0) and Inherited IsValid (False);

		End;

Each time the user makes a change to the contents of the control, we have to make sure the associated controls respond appropriately. Once a valid phone number is present, the option button (if present) and the extension label and control (if present) can be enabled, but not until:

	Procedure tPhone.Changed (var Msg: tMessage);

		Begin

		If IsValid then

			Begin

			If Assigned (Option) then

				Option^.Enable;

			If Assigned (ExtLabel) then

				ExtLabel^.Enable;

			If Assigned (Ext) then

				Ext^.Enable;

			End

		else

			Begin

			If Assigned (Option) then

				Begin

				Option^.SetCheck (0);

				Option^.Disable;

				End;

			If Assigned (ExtLabel) then

				ExtLabel^.Disable;

			If Assigned (Ext) then

				Ext^.Disable;

			End;

		End;

If you decide to add Enable and Disable methods to tPhone (we don't need them for this project), remember that the Enable method should enable just the primary edit control; it could then invoke Changed to enable the associated controls only if the primary control contains a valid phone number.

Finally, the Dial method adds the ability we developed last chapter, to dial the phone via the modem. In SetTime we remained connected to the modem until the operation was complete. When implementing an autodial function, we have to notify the user to pick up the receiver, but the user has to notify the program when to drop the modem because, without a modem tone at the other end, the modem can't tell when the dialing has completed. A message box explains this to the user; otherwise the code is quite similar to the same segment of SetTime:

	Procedure tPhone.Dial (aPort: Word);

		Var

			Modem: tModem;

			Number,

			Message: tOString;

		Begin

		Modem.Init (aPort, 64, 64, 1200, 8, OneStopBit, NoParity);

		Number.Init (32);

		Message.Init (0);

		Number.SetTextW (@Self);

		Message.SetTextR (str_ClickAfterDial);

		Modem.Reset;

		Modem.Dial (Number, True);

		MessageBox (hWindow,

			Message.CString,

			pDlgAppWindow (Parent)^.BaseCaption.CString,

			0);

		Modem.HangUp;

		Modem.Done;

		Number.Done;

		Message.Done;

		End;

Creating the AddrData Unit

The Addressatron application can be thought of as a collection of names and addresses. The AddrData unit describes the tAddrData class. Objects of this class contain all the information Addressatron needs to have on each person it tracks.

The ADDRDATA.PAS unit is based on CLASSKEL.PAS. Objects of the class this unit defines will be Loaded and Stored, so the stream components should be left in. The interface section looks like this:

Unit AddrData;

	(***)

						Interface

	(***)

	Uses

		Objects,

		OString;

	Type

		pItem = ^tItem;

		tItem = Object (tOString)

			MailLabel,

			Salutation,

			Closing,

			WorkPhone,

			FaxPhone,

			ModemPhone,

			PagerPhone,

			HomePhone,

			WorkPhoneExt,

			PagerPhoneExt: tOString;

			Constructor Init (const aItem: tOString);

			Destructor Done; Virtual;

			Constructor Load (var S: tStream);

			Procedure Store (var S: tStream);

			End;

If you look too quickly, you may think I've forgotten a field for the name; but I haven't. This class is derived from tOString; therefore it has inherited the ability to store a string. Since the key of a tItem is the person's name, that means tItem objects can be placed in and retrieved from a tSortedOCollection.

The constructor and destructor are straightforward:

	Constructor tItem.Init (const aItem: tOString);

		Begin

		Inherited InitText (aItem);

		MailLabel.Init (0);

		Salutation.Init (0);

		Closing.Init (0);

		WorkPhone.Init (0);

		FaxPhone.Init (0);

		ModemPhone.Init (0);

		PagerPhone.Init (0);

		HomePhone.Init (0);

		WorkPhoneExt.Init (0);

		PagerPhoneExt.Init (0);

		End;

	Destructor tItem.Done;

		Begin

		Inherited Done;

		MailLabel.Done;

		Salutation.Done;

		Closing.Done;

		WorkPhone.Done;

		FaxPhone.Done;

		ModemPhone.Done;

		PagerPhone.Done;

		HomePhone.Done;

		WorkPhoneExt.Done;

		PagerPhoneExt.Done;

		End;

Neither are the Load and Store methods surprising:

	Constructor tItem.Load (var S: tStream);

		Begin

		Inherited Load (S);

		MailLabel.Load (S);

		Salutation.Load (S);

		Closing.Load (S);

		WorkPhone.Load (S);

		FaxPhone.Load (S);

		ModemPhone.Load (S);

		PagerPhone.Load (S);

		HomePhone.Load (S);

		WorkPhoneExt.Load (S);

		PagerPhoneExt.Load (S);

		End;

	Procedure tItem.Store (var S: tStream);

		Begin

		Inherited Store (S);

		MailLabel.Store (S);

		Salutation.Store (S);

		Closing.Store (S);

		WorkPhone.Store (S);

		FaxPhone.Store (S);

		ModemPhone.Store (S);

		PagerPhone.Store (S);

		HomePhone.Store (S);

		WorkPhoneExt.Store (S);

		PagerPhoneExt.Store (S);

		End;

The unit ends with the registration of the new class:

	Const

		rItem: tStreamRec =

			(

			ObjType: 13002;

			VmtLink: Ofs (TypeOf (tItem)^);

			Load: @tItem.Load;

			Store: @tItem.Store

);

	Begin

	RegisterType (rItem);

	End.

Writing the Base Program

The base Addressatron program file looks like all the other tDlgAppWindow applications we've written. But as we load it with features, the resemblance is quickly drowned out.

The opening lines of the file ADDRTRON.PAS suggest its complexity; the Uses clauses invokes almost every unit we've written, and most of the ones that come with ObjectWindows:

Program Addrtron;

	{$R Addrtron.res}

	Uses

		WinProcs,

		WinTypes,

		Objects,

		OWindows,

		DlgApp,

		Controls,

		OString,

		SmartCmb,

		Menus,

		IniData,

		ClpBoard,

		AddrData,

		Phones;

Following that are the ID constants for the main dialog controls:

	Const

		id_Items = 1001;

		id_ItemsCommand = 1002;

		id_MailLabel = 1003;

		id_Salutation = 1004;

		id_Closing = 1005;

		id_ClosingCommand = 1006;

		id_Work = 1007;

		id_Fax = 1008;

		id_Modem = 1009;

		id_Pager = 1010;

		id_Home = 1011;

		id_WorkPhone = 1012;

		id_WorkPhoneExt = 1013;

		id_FaxPhone = 1014;

		id_ModemPhone = 1015;

		id_PagerPhone = 1016;

		id_PagerPhoneExt = 1017;

		id_HomePhone = 1018;

		id_Dial = 1019;

		id_WorkPhoneExtLabel = 1020;

		id_PagerPhoneExtLabel = 1021;

		size_Items = 32;

		size_MailLabel = 256;

		size_Salutation = 48;

		size_Closing = 24;

Then there's the constants for the menu commands that are unique to this application, and a stringtable ID for an error message string:

	Const

		cm_FilePrintMailingLabels = 110;

		cm_FilePrintReturnLabels = 111;

		cm_FilePageSetupMailingLabels = 112;

		cm_FilePageSetupReturnLabels = 113;

		cm_Port1 = 501;

		cm_Port2 = 502;

		cm_Port3 = 503;

		cm_Port4 = 504;

		cm_SetReturnAddress = 505;

	Const

		str_NotFound = 13002;

The main dialog features two combo box/push button combinations of the type we've encapsulated as a tSmartCombo. However, each must be customized for this application. Here are the definitions:

	Type

		tItemCombo = Object (tSmartCombo)

			Procedure Add; Virtual;

			Procedure Delete; Virtual;

			Procedure Selected (var Msg: tMessage);

				Virtual nf_First + cbn_SelChange;

			End;

	Type

		tClosingCombo = Object (tSmartCombo)

			Procedure Add; Virtual;

			End;

Following those definitions is the definition for tMainDlg:

	Type

		pMainDlg = ^tMainDlg;

		tMainDlg = Object (tDlgAppWindow)

			Items: tItemCombo;

			MailLabel: tXEdit;

			Salutation: tXEdit;

			Closings: tClosingCombo;

			WorkPhone,

			FaxPhone,

			ModemPhone,

			PagerPhone,

			HomePhone: tPhone;

			Dial: tXButton;

			ItemsData: pSortedOCollection;

			ActiveItem: pItem;

			ClosingData: pSortedOCollection;

			Ini: tIniData;

			Port: Byte;

			PortMenu: Array [1..4] of tMenuItem;

			Constructor Init;

			Destructor Done; Virtual;

			Procedure SetupWindow; Virtual;

			Procedure FileNew; Virtual;

			Procedure FileOpen; Virtual;

			Procedure FileSave; Virtual;

			Procedure FileClose; Virtual;

			Function AddItem (const aItem: tOString): Integer;

			Procedure SelectItem (Index: Integer);

			Function AddClosing (const aClosing: tOString): Integer;

			Procedure cmPort1 (var Msg: tMessage);

				Virtual cm_First + cm_Port1;

			Procedure cmPort2 (var Msg: tMessage);

				Virtual cm_First + cm_Port2;

			Procedure cmPort3 (var Msg: tMessage);

				Virtual cm_First + cm_Port3;

			Procedure cmPort4 (var Msg: tMessage);

				Virtual cm_First + cm_Port4;

			Procedure cmDial (var Msg: tMessage);

				Virtual id_First + id_Dial;

			End;

The last definition is for the standard tDlgApp:

	Type

		pDlgApp = ^tDlgApp;

		tDlgApp = Object (tApplication)

			Procedure InitInstance; Virtual;

			Procedure InitMainWindow; Virtual;

			Function ProcessAppMsg (var Message: tMsg): Boolean; virtual;

			End;

The ItemCombo is the "smart" combo box which controls the rest of the application. This is where people's names will be placed. The name will be used as the key to locate the associated information on demand.

When an item is added to the combo box, we'll need to construct an "empty" tItem object to associate with it:

	Procedure tItemCombo.Add;

		Var

			Item: tOString;

		Begin

		Item.Init (0);

		GetText (Item);

		SetSelIndex (pMainDlg (Parent)^.AddItem (Item));

		Item.Done;

		pMainDlg (Parent)^.SelectItem (GetSelIndex);

		End;

tMaindDlg.AddItem will construct the empty object; we then select it so it becomes the "active" item.

Likewise deleting an item must delete the associated tItem object from the collection:

	Procedure tItemCombo.Delete;

		Begin

		pMainDlg (Parent)^.ItemsData^.Delete

			(pMainDlg (Parent)^.ActiveItem);

		pMainDlg (Parent)^.ActiveItem := Nil;

		Inherited Delete;

		pMainDlg (Parent)^.SelectItem (GetSelIndex);

		End;

Selecting an item merely tells us which item to make the active one; the Selected method so informs the tMainDlg object:

	Procedure tItemCombo.Selected (var Msg: tMessage);

		Begin

		Inherited Selected (Msg);

		pMainDlg (Parent)^.SelectItem (GetSelIndex);

		End;

The other smart combo on the dialog is the one which contains a set of letter closings, such as "Yours truly," "Sincerely," and "Let's do lunch." Rather than try to guess all possible closings, Addressatron is built to let the user build up his or her set. Since the set will be stored as part of the same file which contains the list of users, the application must be notified when a new closing is added to the list. That's the job of the tClosingCombo.Add method:

	Procedure tClosingCombo.Add;

		Var

			Item: tOString;

		Begin

		Item.Init (0);

		GetText (Item);

		SetSelIndex (pMainDlg (Parent)^.AddClosing (Item));

		Item.Done;

		End;

The gets the preliminaries out of the way; we can now write the tMainDlg constructor:

	Constructor tMainDlg.Init;

		Procedure GetInitialData;

			Begin

				Ú

				Ú

			End;

		Begin

		Inherited Init;

		Items.InitResource (@Self, id_Items, size_Items, id_ItemsCommand);

		MailLabel.InitResource (@Self, id_MailLabel, size_MailLabel);

		Salutation.InitResource (@Self, id_Salutation, size_Salutation);

		Closings.InitResource (@Self,

			id_Closing, size_Closing, id_ClosingCommand);

		WorkPhone.InitResource (@Self,

			id_WorkPhone, id_Work, id_WorkPhoneExtLabel, id_WorkPhoneExt);

		FaxPhone.InitResource (@Self, id_FaxPhone, id_Fax, 0, 0);

		ModemPhone.InitResource (@Self, id_ModemPhone, id_Modem, 0, 0);

		PagerPhone.InitResource (@Self,

			id_PagerPhone, id_Pager,

			id_PagerPhoneExtLabel, id_PagerPhoneExt);

		HomePhone.InitResource (@Self, id_HomePhone, id_Home, 0, 0);

		Dial.InitResource (@Self, id_Dial);

		ItemsData := Nil;

		ActiveItem := Nil;

		ClosingData := Nil;

		GetInitialData;

		End;

A few properties are initialized in the GetInitialData subprocedure:

	Constructor tMainDlg.Init;

		Procedure GetInitialData;

			Begin

			Ini.Init;

			Ini.SetPathnameP ('Addrtron.INI');

			Ini.SetSectionP ('Addressatron List');

			Ini.Default.SetTextP ('2');

			Ini.SetKeyP ('Port');

			Port := Word (Ini.Value.CString[0]) - Word ('0');

			Ini.Default.Clear;

			Ini.SetKeyP ('Printer');

			Ini.SetDelimiter (',');

			If Ini.Value.Length > 0 then

				Printer.SetDevice (pOString (Ini.Values.At(0))^.CString,

					pOString (Ini.Values.At(1))^.CString,

					pOString (Ini.Values.At(2))^.CString);

			End;

		Begin

		Inherited Init;

				Ú

				Ú

		GetInitialData;

		End;

The object pointers ItemsData and ClosingData will be given values by either FileNew or FileOpen when the application starts; likewise, they will be disposed by FileClose. The destructor, therefore, doesn't have to worry about them:

	Destructor tMainDlg.Done;

		Begin

		Items.Done;

		MailLabel.Done;

		Salutation.Done;

		Closings.Done;

		WorkPhone.Done;

		FaxPhone.Done;

		ModemPhone.Done;

		PagerPhone.Done;

		HomePhone.Done;

		Dial.Done;

		Ini.Done;

		PortMenu[1].Done;

		PortMenu[2].Done;

		PortMenu[3].Done;

		PortMenu[4].Done;

		Inherited Done;

		End;

The choice of ports for the autodial function is handled identically to SetTime, except the Ports menu is under Options instead of Setup. As in SetTime, the Ports menu is initialized in SetupWindow:

	Procedure tMainDlg.SetupWindow;

		Var

			h: tHandle;

			p: Word;

		Begin

		Inherited SetupWindow;

		h := GetMenu (hWindow);

		h := GetSubMenu (h, 3);

		h := GetSubMenu (h, 0);

		For p := 1 to 4 do

			PortMenu[p].InitResource (h, p-1);

		PortMenu[Port].Check;

		End;

The FileNew method creates empty objects for each of the pointers that needs one; it also clears the various controls:

	Procedure tMainDlg.FileNew;

		Begin

		Inherited FileNew;

		ItemsData := New (pSortedOCollection, Init (50, 100));

		ClosingData := New (pSortedOCollection, Init (5, 1));

		Items.ClearList;

		MailLabel.Clear;

		Salutation.Clear;

		Closings.ClearList;

		WorkPhone.Clear;

		FaxPhone.Clear;

		ModemPhone.Clear;

		PagerPhone.Clear;

		HomePhone.Clear;

		End;

FileOpen is analogous to FileNew, except the pointers are given the addresses of objects loaded from disk:

	Procedure tMainDlg.FileOpen;

		Procedure DoAddItem (aItem: pItem); Far;

			Begin

			Items.AddString (aItem^.CString);

			End;

		Procedure DoAddClosing (aClosing: pOString); Far;

			Begin

			Closings.AddString (aClosing^.CString);

			End;

		Var

			S: tBufStream;

		Begin

		Inherited FileOpen;

		S.Init (Datafile.Pathname.CString, stOpenRead, 2048);

		ItemsData := pSortedOCollection (S.Get);

		ClosingData := pSortedOCollection (S.Get);

		S.Done;

		Items.ClearList;

		ItemsData^.ForEach (@DoAddItem);

		Closings.ClearList;

		ClosingData^.ForEach (@DoAddClosing);

		If ItemsData^.Count > 0 then

			Begin

			Items.SetSelIndex (0);

			SelectItem (0);

			End

		else

			Begin

			MailLabel.Clear;

			Salutation.Clear;

			WorkPhone.Clear;

			FaxPhone.Clear;

			ModemPhone.Clear;

			PagerPhone.Clear;

			HomePhone.Clear;

			End;

		End;

After the data is loaded the contents of the two collections are copied to their respective combo boxes.

In FileSave, data is sent to the stream in the same order in which it was received:

	Procedure tMainDlg.FileSave;

		Var

			S: tBufStream;

		Begin

		SelectItem (Items.GetSelIndex);

		Inherited FileSave;

		S.Init (Datafile.Pathname.CString, stCreate, 2048);

		S.Put (ItemsData);

		S.Put (ClosingData);

		S.Done;

		End;

FileClose simply disposes of the objects:

	Procedure tMainDlg.FileClose;

		Begin

		If Assigned (ItemsData) then

			Begin

			Dispose (ItemsData, Done);

			ItemsData := Nil;

			End;

		If Assigned (ClosingData) then

			Begin

			Dispose (ClosingData, Done);

			ClosingData := Nil;

			End;

		Inherited FileClose;

		End;

Previously we saw the AddItem method invoked by the Items combo box when a new name was added to the list. I said that AddItem would create an "empty" tItem object:

	Function tMainDlg.AddItem (const aItem: tOString): Integer;

		Var

			Item: pItem;

		Begin

		Item := New (pItem, Init (aItem));

		ItemsData^.Insert (Item);

		Items.AddString (Item^.CString);

		AddItem := ItemsData^.IndexOf (Item);

		Datafile.Dirty := True;

		End;

Thanks to objects, it looks--and is--easy. When the new tItem is created, its own constructor places "empty" values in its various properties.

However, the next method is more complex. SelectItem is invoked when an item selection is made. It must check the controls for any data from the previous selection which might have been changed, then place in them the values for the new selection. To do this cleanly I've divided the job into a main routine and a couple of subprocedures. Looking at the main routine first:

	Procedure tMainDlg.SelectItem (Index: Integer);

		Procedure GetData;

			Begin

				Ú

				Ú

			End;

		Procedure PutData;

			Begin

				Ú

				Ú

			End;

		Begin

		If Assigned (ActiveItem) then

			GetData;

		If Index > -1 then

			ActiveItem := ItemsData^.At (Index)

		else

			ActiveItem := Nil;

		If Assigned (ActiveItem) then

			PutData

		else

			Begin

			MailLabel.Clear;

			Salutation.Clear;

			WorkPhone.Clear;

			FaxPhone.Clear;

			ModemPhone.Clear;

			PagerPhone.Clear;

			HomePhone.Clear;

			End;

		End;

If there was a previously selected item, the nested procedure GetData will apply any changed information to it. If Index is equal to -1, then an item has been de-selected--this would happen if an entry were deleted. In such a case, ActiveItem becomes Nil and the controls are cleared. Otherwise, the address of the new selection is assigned to ActiveItem and the data from it is used to populate the dialog controls in PutData.

Now we can look at the subprocedures. Each is long, but repetitive. GetData looks at each control and compares its current value to the one originally loaded from tItem. If any one has changed, the Dirty flag is set and the new value is used to replace the old:

		Procedure GetData;

			Begin

			If not ActiveItem^.MailLabel.MatchesW (@MailLabel) then

				Begin

				Datafile.Dirty := True;

				ActiveItem^.MailLabel.SetTextW (@MailLabel);

				End;

			If not ActiveItem^.Salutation.MatchesW (@Salutation) then

				Begin

				Datafile.Dirty := True;

				ActiveItem^.Salutation.SetTextW (@Salutation);

				End;

			If not ActiveItem^.Closing.MatchesW (@Closings) then

				Begin

				Datafile.Dirty := True;

				ActiveItem^.Closing.SetTextW (@Closings);

				End;

			If not ActiveItem^.WorkPhone.MatchesW (@WorkPhone) then

				Begin

				Datafile.Dirty := True;

				ActiveItem^.WorkPhone.SetTextW (@WorkPhone);

				End;

			If not ActiveItem^.FaxPhone.MatchesW (@FaxPhone) then

				Begin

				Datafile.Dirty := True;

				ActiveItem^.FaxPhone.SetTextW (@FaxPhone);

				End;

			If not ActiveItem^.ModemPhone.MatchesW (@ModemPhone) then

				Begin

				Datafile.Dirty := True;

				ActiveItem^.ModemPhone.SetTextW (@ModemPhone);

				End;

			If not ActiveItem^.PagerPhone.MatchesW (@PagerPhone) then

				Begin

				Datafile.Dirty := True;

				ActiveItem^.PagerPhone.SetTextW (@PagerPhone);

				End;

			If not ActiveItem^.HomePhone.MatchesW (@HomePhone) then

				Begin

				Datafile.Dirty := True;

				ActiveItem^.HomePhone.SetTextW (@HomePhone);

				End;

			If not ActiveItem^.WorkPhoneExt.MatchesW (WorkPhone.Ext) then

				Begin

				Datafile.Dirty := True;

				ActiveItem^.WorkPhoneExt.SetTextW (WorkPhone.Ext);

				End;

			If not ActiveItem^.PagerPhoneExt.MatchesW (PagerPhone.Ext) then

				Begin

				Datafile.Dirty := True;

				ActiveItem^.PagerPhoneExt.SetTextW (PagerPhone.Ext);

				End;

			End;

PutData's job would be simpler; it doesn't have to compare new and old values, just load the current values into the controls. But some of the controls are tPhone objects and PutData has to figure out which option button--if any--to set. It sets the button belonging to the first valid phone number it finds:

		Procedure PutData;

			Procedure EnableOption (var Option: tXOption; OK: Boolean);

				Begin

				If OK then

					Option.Enable

				else

					Option.Disable;

				End;

			Begin

			MailLabel.SetText (ActiveItem^.MailLabel);

			Salutation.SetText (ActiveItem^.Salutation);

			Closings.SetText (ActiveItem^.Closing);

			WorkPhone.Uncheck;

			WorkPhone.SetText (ActiveItem^.WorkPhone);

			FaxPhone.Uncheck;

			FaxPhone.SetText (ActiveItem^.FaxPhone);

			ModemPhone.Uncheck;

			ModemPhone.SetText (ActiveItem^.ModemPhone);

			PagerPhone.Uncheck;

			PagerPhone.SetText (ActiveItem^.PagerPhone);

			HomePhone.Uncheck;

			HomePhone.SetText (ActiveItem^.HomePhone);

			WorkPhone.Ext^.SetText (ActiveItem^.WorkPhoneExt);

			PagerPhone.Ext^.SetText (ActiveItem^.PagerPhoneExt);

			If WorkPhone.IsValid then

				Begin

				WorkPhone.Check;

				Dial.Enable;

				End

			else if FaxPhone.IsValid then

				Begin

				FaxPhone.Check;

				Dial.Enable;

				End

			else if ModemPhone.IsValid then

				Begin

				ModemPhone.Check;

				Dial.Enable;

				End

			else if PagerPhone.IsValid then

				Begin

				PagerPhone.Check;

				Dial.Enable;

				End

			else if HomePhone.IsValid then

				Begin

				HomePhone.Check;

				Dial.Enable;

				End

			else

				Dial.Disable;

			End;

The AddClosing method is invoked by the Closing smart combo box when the user adds a letter closing to the list:

	Function tMainDlg.AddClosing (const aClosing: tOString): Integer;

		Var

			Closing: pOString;

		Begin

		Closing := New (pOString, InitText (aClosing));

		ClosingData^.Insert (Closing);

		Closings.AddString (Closing^.CString);

		AddClosing := ClosingData^.IndexOf (Closing);

		Datafile.Dirty := True;

		End;

As mentioned, the Ports menu is handled identically to SetTime:

	Procedure tMainDlg.cmPort1 (var Msg: tMessage);

		Begin

		PortMenu[Port].Uncheck;

		Port := 1;

		Ini.SetKeyP ('Port');

		Ini.SetValueP ('1');

		PortMenu[Port].Check;

		End;

	Procedure tMainDlg.cmPort2 (var Msg: tMessage);

		Begin

		PortMenu[Port].Uncheck;

		Port := 2;

		Ini.SetKeyP ('Port');

		Ini.SetValueP ('2');

		PortMenu[Port].Check;

		End;

	Procedure tMainDlg.cmPort3 (var Msg: tMessage);

		Begin

		PortMenu[Port].Uncheck;

		Port := 3;

		Ini.SetKeyP ('Port');

		Ini.SetValueP ('3');

		PortMenu[Port].Check;

		End;

	Procedure tMainDlg.cmPort4 (var Msg: tMessage);

		Begin

		PortMenu[Port].Uncheck;

		Port := 4;

		Ini.SetKeyP ('Port');

		Ini.SetValueP ('4');

		PortMenu[Port].Check;

		End;

The event handler for the Dial button has to figure out which phone number's option button is set, then invoke that object's Dial method:

	Procedure tMainDlg.cmDial (var Msg: tMessage);

		Begin

		If Msg.lParamHi = bn_Clicked then

			Begin

			Disable;

			If WorkPhone.IsChecked then

				WorkPhone.Dial (Port)

			else if FaxPhone.IsChecked then

				FaxPhone.Dial (Port)

			else if ModemPhone.IsChecked then

				ModemPhone.Dial (Port)

			else if PagerPhone.IsChecked then

				PagerPhone.Dial (Port)

			else if HomePhone.IsChecked then

				HomePhone.Dial (Port);

			Enable;

			End;

		End;

The program file ends with the usual tDlgApp methods and standard main code block:

	Procedure tDlgApp.InitInstance;

		Begin

		Inherited InitInstance;

		hAccTable := LoadAccelerators (hInstance, 'MAIN');

		End;

	Procedure tDlgApp.InitMainWindow;

		Begin

		MainWindow := New (pMainDlg, Init);

		End;

	Function tDlgApp.ProcessAppMsg (var Message: tMsg): Boolean;

		Begin

		ProcessAppMsg :=

			ProcessAccels (Message) or

			ProcessDlgMsg (Message);

		End;

	Var

		MyDlgApp: tDlgApp;

	Begin

	MyDlgApp.Init ('Addressatron');

	MyDlgApp.Run;

	MyDlgApp.Done;

	End.

At this point, you should be able to compile and run Addressatron--use it to store names, addresses, and phone numbers, and even to dial the numbers. However, you shouldn't type in the contents of your rolodex just yet. We'll be adding more objects to store in the file, and that will make loading a file without those objects impossible.

Storing a Return Address

One of Addressatron's features is the ability to print sheets of return address labels. In order to do this it needs to know your return address! In this section we'll build a return address object and dialog box.

We'll store the return address in a simple tOString object, so we don't have to create a new class for one. On the other hand, we do need to derive a class from tDialog for the dialog box in which the user will type his or her address.

Even though we'll almost certainly never reuse this class, it's good form to place it in a unit by itself. This unit is RETURN.PAS, and it's only 46 lines long:

Unit Return;

	(***)

						Interface

	(***)

	Uses

		OWindows,

		ODialogs,

		OString,

		Controls;

	Const

		id_ReturnAddress = 101;

	Type

		pSetReturnAddressDlg = ^tSetReturnAddressDlg;

		tSetReturnAddressDlg = Object (tDialog)

			ReturnAddress: tXEdit;

			XBuffer: Record

				ReturnAddress: tOString;

				End;

			Constructor Init (aParent: pWindowsObject);

 Destructor Done; Virtual;

			End;

	(***)

					Implementation

	(***)

	Constructor tSetReturnAddressDlg.Init (aParent: pWindowsObject);

		Begin

		Inherited Init (aParent, 'SetReturnAddress');

		ReturnAddress.InitResource (@Self, id_ReturnAddress, 128);

		XBuffer.ReturnAddress.Init (0);

		TransferBuffer := @XBuffer;

		End;

	Destructor tSetReturnAddressDlg.Done;

		Begin

		ReturnAddress.Done;

		XBuffer.ReturnAddress.Done;

		Inherited Done;

		End;

	End.

Just by reading the class definition, you can probably picture the dialog box. Clearly it has at least one control, the ReturnAddress edit box. Because tSetReturnAddressDlg is derived from tDialog, it's implied that the dialog box also has OK and Cancel buttons; their behavior is built into tDialog.

The template I designed is shown in Figure 13.3.

�EMBED MSPowerPoint \s * mergeformat���

Figure 13.3. The Set Return Address dialog template.

If you prefer not to make your users press Shift+Enter to create a new line in the Return Address edit box, you can check the "Want Return" style for it. However, if you do, then a simple Enter will no longer push the default OK button; they'll have to click it with the mouse or use the tab key to switch focus to it.

To add the return address object to tMainDlg, first add Return to the list of units in the Uses clause. Then include the object in the class definition:

	Type

		pMainDlg = ^tMainDlg;

		tMainDlg = Object (tDlgAppWindow)

				Ú

				Ú

			ReturnAddress: pOString;

			Constructor Init;

				Ú

				Ú

			Procedure cmSetReturnAddress (var Msg: tMessage);

				Virtual cm_First + cm_SetReturnAddress;

			End;

Set the new object to Nil in the constructor:

	Constructor tMainDlg.Init;

				Ú

				Ú

		Begin

				Ú

				Ú

		ReturnAddress := Nil;

		End;

Create an "empty" ReturnAddress in FileNew and load an existing one in FileOpen:

	Procedure tMainDlg.FileNew;

		Begin

		Inherited FileNew;

		ItemsData := New (pSortedOCollection, Init (50, 100));

		ClosingData := New (pSortedOCollection, Init (5, 1));

		ReturnAddress := New (pOString, Init (0));

		Items.ClearList;

				Ú

				Ú

		End;

	Procedure tMainDlg.FileOpen;

				Ú

				Ú

		Begin

		Inherited FileOpen;

		S.Init (Datafile.Pathname.CString, stOpenRead, 2048);

		ItemsData := pSortedOCollection (S.Get);

		ClosingData := pSortedOCollection (S.Get);

		ReturnAddress := pOString (S.Get);

		S.Done;

		Items.ClearList;

				Ú

				Ú

		End;

Save the new object in FileSave and dispose of it in FileClose:

	Procedure tMainDlg.FileSave;

		Var

			S: tBufStream;

		Begin

		SelectItem (Items.GetSelIndex);

		Inherited FileSave;

		S.Init (Datafile.Pathname.CString, stCreate, 2048);

		S.Put (ItemsData);

		S.Put (ClosingData);

		S.Put (ReturnAddress);

		S.Done;

		End;

	Procedure tMainDlg.FileClose;

		Begin

				Ú

				Ú

		If Assigned (ReturnAddress) then

			Begin

			Dispose (ReturnAddress, Done);

			ReturnAddress := Nil;

			End;

		Inherited FileClose;

		End;

Finally, add a command handler that will bring up the Set Return Address dialog at the user's request:

	Procedure tMainDlg.cmSetReturnAddress (var Msg: tMessage);

		Var

			Dlg: tSetReturnAddressDlg;

		Begin

		Dlg.Init (@Self);

		Dlg.XBuffer.ReturnAddress.SetText (ReturnAddress^);

		If Dlg.Execute = idOK then

			Begin

			ReturnAddress^.SetText (Dlg.XBuffer.ReturnAddress);

			Datafile.Dirty := True;

			End;

		Dlg.Done;

		End;

Please note that we did not use the tApplication.ExecDialog method to display the dialog box, even though Borland recommends it. The problem is that tApplication.ExecDialog expects the tDialog derivative to have been created on the heap with New; after displaying the dialog ExecDialog actually calls Dispose and gets rid of it! This is fine if you want to create and display a dialog box object in one statement. But in the above method we create the dialog object, place a value in its transfer buffer, then display it. When it returns control to the handler, if the user clicked the OK button, we pull the changed data from the transfer buffer and set the Dirty flag. We couldn't do all that in a single statement! Nor would the code be readable if we could.

Sending Rich Text to the Clipboard

Word for Windows and some other premium Windows-based word processors support the Rich Text Format, a method of communicating heavily formatted text using nothing but ANSI characters. By placing RTF data on the Clipboard, we can send a pre-formatted skeleton letter to such a word processor.

Without our writing another line of code, Addressatron already features a fairly sophisticated Clipboard interface. That's because all edit controls have the ability to cut, copy and paste built in. Whenever an edit control has the focus, the key combination Ctrl+Ins will copy the control's contents to the Clipboard while Shift+Del will cut it and Shift+Ins will paste whatever text is in the Clipboard into the control.

Rather than duplicate that behavior at the menu level, the Edit..Copy command will place a skeleton letter on the Clipboard in two formats: regular text, which admittedly will be of little use, and Rich Text Format, which can actually create and format an entire skeleton letter.

Plain text is simpler, of course; so we'll get that out of the way first. It requires a new class derived from tClipboardText called tTextFormat. As is usually the case with Clipboard format classes, this must be placed in the same file as tMainDlg so its methods can refer to the parent class. Here's tTextFormat's definition:

	Type

		pTextFormat = ^tTextFormat;

		tTextFormat = Object (tClipboardText)

			Text: tOString;

			Constructor Init;

			Destructor Done; Virtual;

			Procedure Render

				(

				Parent: pWindowsObject;

				var Buffer: Pointer;

				var BufferLength: LongInt

); Virtual;

			End;

And the three methods:

	Constructor tTextFormat.Init;

		Begin

		Inherited Init;

		Text.Init (0);

		End;

	Destructor tTextFormat.Done;

		Begin

		Text.Done;

		Inherited Done;

		End;

	Procedure tTextFormat.Render

			(

			Parent: pWindowsObject;

			var Buffer: Pointer;

			var BufferLength: LongInt

);

		Var

			Address: tOString;

			Line: pOString;

			Count: Word;

		Const

			SkipLine = #13 + #10 + #13 + #10;

		Begin

		Text.SetText (pMainDlg (Parent)^.ActiveItem^.MailLabel);

		Text.AppendP (SkipLine);

		Text.Append (pMainDlg (Parent)^.ActiveItem^.Salutation);

		Text.AppendP (',' + SkipLine);

		Text.AppendP ('Place body of letter here...');

		Text.AppendP (SkipLine);

		Text.Append (pMainDlg (Parent)^.ActiveItem^.Closing);

		Text.AppendP (',');

		Buffer := Text.CString;

		BufferLength := Text.Length + 1;

		End;

You've seen text format objects before, so this one should hold no surprises. All we do is build up the text for the skeleton letter. Here's a sample of what the output will look like:

Keith Weiskamp

The Coriolis Group

7721 East Gray Road #204

Scottsdale, AZ 85260

Dear Keith,

Place body of letter here...

Cordially,

The RTF format class is almost identical. It, too, is derived from tClipboardText. That's because RTF format is a text format; the formatting commands are intermixed with the text and are written in regular ANSI characters. The block of text even has to be NULL-terminated, just like cf_Text format. Here's the definition for tRtfFormat:

	Type

		pRtfFormat = ^tRtfFormat;

		tRtfFormat = Object (tClipboardText)

			Text: tOString;

			Constructor Init;

			Destructor Done; Virtual;

			Procedure Render

				(

				Parent: pWindowsObject;

				var Buffer: Pointer;

				var BufferLength: LongInt

); Virtual;

			End;

And here are the three methods:

	Constructor tRtfFormat.Init;

		Begin

		Inherited InitCustom ('Rich Text Format');

		Text.Init (0);

		End;

	Destructor tRtfFormat.Done;

		Begin

		Text.Done;

		Inherited Done;

		End;

	Procedure tRtfFormat.Render

			(

			Parent: pWindowsObject;

			var Buffer: Pointer;

			var BufferLength: LongInt

);

		Var

			Address: tOString;

			Line: pOString;

			Count: Word;

		Begin

		Address.InitText (pMainDlg (Parent)^.ActiveItem^.MailLabel);

		Text.SetTextC ('{\rtf1\ansi \deff0\deflang1024');

		Text.AppendC ('{\fonttbl{\f0\froman Times New Roman;}}');

		Text.AppendC ('{\stylesheet{\fs20\lang1033 \snext0 Normal;}');

		Text.AppendC ('{\s1 \lang1033 \sbasedon0\snext1 InsideAddress;}');

		Text.AppendC ('{\s2\qj\li5040\sb120 \lang1033 \sbasedon0\snext0 CompClose;}');

		Text.AppendC ('{\s3\qj\sb240\sa120 \lang1033 \sbasedon0\snext0 Salutation;}}');

		Text.AppendC ('\pard\plain \s1 ');

		Line := Address.GetToken (#10);

		Count := 0;

		While Assigned (Line) do

			Begin

			Inc (Count);

			If Count > 1 then

				Text.AppendC ('\line ');

			Text.Append (Line^);

			Dispose (Line, Done);

			Line := Address.GetToken (#10);

			End;

		Text.AppendC ('\par \pard\plain \s3\qj\sb240\sa120 ');

		Text.Append (pMainDlg (Parent)^.ActiveItem^.Salutation);

		Text.AppendC (',');

		Text.AppendC ('\par \pard\plain \fs20\lang1033 Place body of letter here...');

		Text.AppendC ('\par \pard\plain \s2\qj\li5040\sb120 ');

		Text.Append (pMainDlg (Parent)^.ActiveItem^.Closing);

		Text.AppendC (',');

		Text.AppendC ('\par \pard\plain \fs20\lang1033 \par }');

		Buffer := Text.CString;

		BufferLength := Text.Length + 1;

		End;

It is beyond the scope of this book to explain the RTF commands. I don't understand them myself; I just let Word for Windows output an RTF skeleton letter, then peeled away parts that didn't look apropos (the color table entries, for instance). The Word for Windows Technical Guide includes a section on RTF; so does the Microsoft Windows Programming Tools reference.

tDlgAppWindow applications automatically possess a Clipboard property; the new formats have to be added to it in the tMainDlg constructor:

	Constructor tMainDlg.Init;

				Ú

				Ú

		Begin

		Inherited Init;

				Ú

				Ú

		Clipboard.Insert (New (pRtfFormat, Init));

		Clipboard.Insert (New (pTextFormat, Init));

		End;

tDlgAppWindow already supplies a handler for the Edit..Copy command that invokes the Clipboard object. If you choose the Edit..Copy command to put an address on the Clipboard and paste it into, say, Notepad (which doesn't understand Rich Text Format), you see output similar to that shown earlier. If, on the other hand, you paste into Word for Windows, it will show up complete with applied styles and formatting:

Keith Weiskamp�The Coriolis Group�7721 East Gray Road #204�Scottsdale, AZ 85260

Dear Keith,

Place body of letter here...

								Cordially,�

Finding That Special Address

Although the combo box provides speedy access to your entire list of names, sometimes a more thorough search is needed. Perhaps you have forgotten the person's name but remember his or her company or city. The Search command will provide Addressatron with this ability.

Adding a Search..Find command to Addressatron is, in some ways, similar to adding the return address dialog. That's because the bulk of the job will be performed by a dialog, which will obtain from the user the parameters of the search.

Windows' Common Dialogs actually include a Find dialog; but, unlike the others, it is almost never used. That's because it is only useful with a handful of callback functions with intricate calling sequences. It winds up being easier to just start from scratch--especially when "scratch" is ObjectWindows.

The SearchFind dialog template is shown in Figure 13.4.

�EMBED MSPowerPoint \s * mergeformat���

Figure 13.4. The SearchFind dialog template.

The tFindDlg class that drives it is implemented in the FIND.PAS unit. Here's the Interface section:

Unit Find;

	(***)

						Interface

	(***)

	Uses

		WinTypes,

		OWindows,

		ODialogs,

		OString,

		Controls;

	Const

		id_FindString = 101;

		id_FindInItem = 102;

		id_FindInLabel = 103;

		id_FindInPhones = 104;

	Type

		pFindDlg = ^tFindDlg;

		tFindDlg = Object (tDialog)

			FindString: tXEdit;

			FindInItem,

			FindInLabel,

			FindInPhones: tXCheckbox;

			OkCommand: tButton;

			XBuffer: Record

				FindString: tOString;

				FindInItem,

				FindInLabel,

				FindInPhones: Word;

				End;

			Constructor Init (aParent: pWindowsObject);

			Destructor Done; Virtual;

			Procedure GetFindString (var aText: tOString);

			Function ShouldFindInItem: Boolean;

			Function ShouldFindInLabel: Boolean;

			Function ShouldFindInPhones: Boolean;

			Function Valid: Boolean;

			Procedure FindStringEvent (var Msg: tMessage);

				Virtual id_First + id_FindString;

			Procedure ShouldFindInItemEvent (var Msg: tMessage);

				Virtual id_First + id_FindInItem;

			Procedure ShouldFindInLabelEvent (var Msg: tMessage);

				Virtual id_First + id_FindInLabel;

			Procedure ShouldFindInPhonesEvent (var Msg: tMessage);

				Virtual id_First + id_FindInPhones;

			End;

The constructor and destructor are quite ordinary for tDialog descendants:

	Constructor tFindDlg.Init (aParent: pWindowsObject);

		Begin

		Inherited Init (aParent, 'SearchFind');

		FindString.InitResource (@Self, id_FindString, 64);

		FindInItem.InitResource (@Self, id_FindInItem);

		FindInLabel.InitResource (@Self, id_FindInLabel);

		FindInPhones.InitResource (@Self, id_FindInPhones);

		OkCommand.InitResource (@Self, idOK);

		XBuffer.FindString.Init (0);

		XBuffer.FindInItem := 1;

		XBuffer.FindInLabel := 1;

		XBuffer.FindInPhones := 0;

		TransferBuffer := @XBuffer;

		End;

	Destructor tFindDlg.Done;

		Begin

		FindString.Done;

		FindInItem.Done;

		FindInLabel.Done;

		FindInPhones.Done;

		OkCommand.Done;

		XBuffer.FindString.Done;

		Inherited Done;

		End;

The initial values for the check boxes specify that the first two should be checked, but by default the search will not be applied to the phone numbers.

We do supply a set of methods to make it easier for the tMaindDlg object to get the results:

	Procedure tFindDlg.GetFindString (var aText: tOString);

		Begin

		aText.SetText (XBuffer.FindString);

		End;

	Function tFindDlg.ShouldFindInItem: Boolean;

		Begin

		ShouldFindInItem := (XBuffer.FindInItem = 1);

		End;

	Function tFindDlg.ShouldFindInLabel: Boolean;

		Begin

		ShouldFindInLabel := (XBuffer.FindInLabel = 1);

		End;

	Function tFindDlg.ShouldFindInPhones: Boolean;

		Begin

		ShouldFindInPhones := (XBuffer.FindInPhones = 1);

		End;

All these do is mask the inner workings of tFindDlg from tMainDlg. We could have done the same with tReturnDlg; but with only one property it hardly seemed worth it. The properties of tFindDlg will actually be used by the search mechanism in tMainDlg; so a clean interface will be appreciated and help make that mechanism more readable, as you'll see.

There are four controls on this dialog besides the OK and Cancel buttons. User action on any one of them can invalidate the dialog. For example, there must be something in the FindString edit box; you can't search for "nothing." Also, at least one of the search location checkboxes must be checked. If the edit box is empty, or the check boxes are all unchecked, then the OK button must be disabled. It's all right for the user to cancel the search operation, but he or she must not be allowed to tell it to do something stupid like run through all the items but not look anywhere or for nothing.

Therefore we supply a Valid method:

	Function tFindDlg.Valid: Boolean;

		Begin

		Valid := (FindString.Length > 0) and

			((FindInItem.GetCheck = 1) or

			(FindInLabel.GetCheck = 1) or

			(FindInPhones.GetCheck = 1));

		End;

This method is invoked by all of the control event handlers. That is, whenever the user touches one of the controls, the check is made and OK is enabled or disabled based on the result:

	Procedure tFindDlg.FindStringEvent (var Msg: tMessage);

		Begin

		If Valid then

			OkCommand.Enable

		else

			OkCommand.Disable;

		End;

	Procedure tFindDlg.ShouldFindInItemEvent (var Msg: tMessage);

		Begin

		If Valid then

			OkCommand.Enable

		else

			OkCommand.Disable;

		End;

	Procedure tFindDlg.ShouldFindInLabelEvent (var Msg: tMessage);

		Begin

		If Valid then

			OkCommand.Enable

		else

			OkCommand.Disable;

		End;

	Procedure tFindDlg.ShouldFindInPhonesEvent (var Msg: tMessage);

		Begin

		If Valid then

			OkCommand.Enable

		else

			OkCommand.Disable;

		End;

One difference between the Return Address dialog and this one is that the Return Address dialog only existed long enough for us to put in the initial data, display the dialog, and get the new data out. But the Search menu contains two related commands: Find and Find Next. Although we could keep the search criteria in some other place, it's simpler to just create the tFindDlg object during tMainDlg initialization and destroy it when the application is closed.

To add the Find dialog box to Addressatron, then, include Find in the list of units in the Uses clause and add a Find property to tMainDlg:

	Type

		pMainDlg = ^tMainDlg;

		tMainDlg = Object (tDlgAppWindow)

				Ú

				Ú

			FindDlg: tFindDlg;

				Ú

				Ú

			Procedure cmSearchFind (var Msg: tMessage);

				Virtual cm_First + cm_SearchFind;

			Procedure cmSearchFindNext (var Msg: tMessage);

				Virtual cm_First + cm_SearchNext;

			Procedure Search (Index: Integer);

			End;

Initialize the FindDlg property in tMainDlg's constructor:

	Constructor tMainDlg.Init;

				Ú

				Ú

		Begin

				Ú

				Ú

		FindDlg.Init (@Self);

		End;

and get rid of it in the destructor:

	Destructor tMainDlg.Done;

		Begin

				Ú

				Ú

		FindDlg.Done;

		Inherited Done;

		End;

Then, when the user chooses the Search..Find command, the handler is triggered:

	Procedure tMainDlg.cmSearchFind (var Msg: tMessage);

		Begin

		If FindDlg.Execute = idOK then

			Search (0);

		End;

We've off loaded the actually search to a separate method because it is also invoked by the handler for the Search..Find Next command:

	Procedure tMainDlg.cmSearchFindNext (var Msg: tMessage);

		Begin

		If FindDlg.XBuffer.FindString.Length > 0 then

			Search (Items.GetSelIndex + 1)

		else

			cmSearchFind (Msg);

		End;

Notice that we've cleverly checked to see if a Search..Find has been chosen yet; if not, we invoke it for the user. This has got to be more user friendly than a message box telling him or her that the wrong command has been chosen!

The Search method itself does the actual work. Because it may have to look in as many as three different places (eight if you count each phone number as a separate place), I've broken the task into a main code block and several subfunctions. First let's look at the main code block:

	Procedure tMainDlg.Search (Index: Integer);

		Var

			i: Integer;

			Item: pItem;

			FindString, Message: tOString;

			Found: Boolean;

		Function FoundInItem: Boolean;

			Begin

				Ú

				Ú

			End;

		Function FoundInLabel: Boolean;

			Begin

				Ú

				Ú

			End;

		Function FoundInPhones: Boolean;

			Begin

				Ú

				Ú

			End;

		Begin

		FindString.Init (0);

		Found := False;

		FindDlg.GetFindString (FindString);

		FindString.CaseSensitive := False;

		If Index >= ItemsData^.Count then

			Index := 0;

		For i := Index to (ItemsData^.Count-1) do

			Begin

			Item := ItemsData^.At (i);

			If FoundInItem or FoundInLabel or FoundInPhones then

				Begin

				Items.SetSelIndex (i);

				SelectItem (i);

				Found := True;

				Break;

				End;

			End;

		If not Found then

			Begin

			Message.Init (0);

			Message.SetTextR (str_NotFound);

			Message.Append (FindString);

			MessageBox (hWindow,

				Message.CString,

				BaseCaption.CString,

				mb_IconAsterisk);

			Message.Done;

			End;

		FindString.Done;

		End;

Three things happen in the main code block. First, the search string is obtained from the FindDlg property. Second, each item in the ItemsData collection is inspected for the search string until either the string is found and selected, or we run out of items. Finally, if the item was not found, an informative if regretful message box is displayed.

Now we can look at the subfunctions:

		Function FoundInItem: Boolean;

			Begin

			FoundInItem := False;

			If FindDlg.ShouldFindInItem then

				If Item^.InString (FindString) > 0 then

					FoundInItem := True;

			End;

		Function FoundInLabel: Boolean;

			Begin

			FoundInLabel := False;

			If FindDlg.ShouldFindInLabel then

				If Item^.MailLabel.InString (FindString) > 0 then

					FoundInLabel := True;

			End;

		Function FoundInPhones: Boolean;

			Begin

			FoundInPhones := False;

			If FindDlg.ShouldFindInPhones then

				If Item^.WorkPhone.InString (FindString) > 0 then

					FoundInPhones := True

				else if Item^.FaxPhone.InString (FindString) > 0 then

					FoundInPhones := True

				else if Item^.ModemPhone.InString (FindString) > 0 then

					FoundInPhones := True

				else if Item^.PagerPhone.InString (FindString) > 0 then

					FoundInPhones := True

				else if Item^.HomePhone.InString (FindString) > 0 then

					FoundInPhones := True;

			End;

Each makes use of the tOString.InStr method (similar to Pascal's Pos function) to determine whether the search string can be found in the item name, mailing label, or one of the phone numbers.

Because all the items are kept in memory, this search scheme is amazingly fast even when there are a lot of records to check.

Printing from Addressatron

And now, the moment we've all been waiting for! We're about to add printing capability to Addressatron. When we're done you'll be able to use Addressatron to address envelopes (assuming your printer can physically handle them), and to turn blank label sheets into return address or mailing labels. In so doing we'll look more closely at the tPrinter class, and derive three new classes from tPrintout. But first, we have to learn all there is to know about fonts.

I'll Take Fonts For $200, Alec

If you're going to print, you're going to use fonts. You need to know these font basics before you hurt yourself.

First of all, let's get one thing straight. What you, and I, and the whole Windows world calls a font is not a font. It's a typeface. "Font" is a printer's word (the people, not the devices) and it refers to a particular typeface in a particular size and style. In other words, 10 point Arial Italic is not the same font as 8 point Arial, or even 10 point Arial Bold Italic.

But words change meaning. Printer's fonts are made of metal and cannot change their size, while TrueType "fonts" are scalable--they can become whatever size you like, and can even change automatically to match the mapping mode. So, fonts they are.

Windows directly supports three kinds of fonts and indirectly, through third party add-ons, several more. The oldest fonts are bitmapped; the first version of Windows used them. They are simply a set of little monochrome bitmaps, one for each character in the font. They had the advantage of being easy to create and display, but they don't scale well. Therefore they came in several sizes. As long as your application asked for a bitmapped font in an available size, it looked all right. But insist on an in-between size, or a really large size, and it suffered from the "jaggies"--the slanted lines more closely resembled stair steps.

Not all printers can support bitmapped fonts. The old daisy whell printers couldn't, of course; but they had their own fonts and Windows was happy to substitute a "screen" font for the display of a "printer" font. A bigger problem was plotters. These are printers which use pens to actually draw their output. They cannot draw bitmaps. So early versions of Windows also supported vector fonts, which were like little metafiles in that they basically consist of the instructions to draw the desired characters. The instructions are supposed to scale well, but in practice they didn't because the eye doesn't perceive teeny letters the same as large ones. What vector fonts needed were additional instructions. For example, what should the font do if a certain stroke (part of a character) falls exactly between two pixels? What if, because of the layout of the pixels, three strokes (like the legs of a lower case m) that are supposed to be evenly spaced, cannot be? These are questions the display driver cannot answer, because they affect the overall look of the font. Really, the font is the only object--and I use that word deliberately--that can respond to such questions.

The information needed to react intelligently to these situations is called hinting and it is what makes TrueType fonts different from (and better than) simple vector fonts. Adobe Type I Postscript fonts, like all other modern font technologies, also use hinting. Each technology stores its fonts differently, though, so they are not interchangeable.

HOT TIP: Learn these font terms.

Serif: The little tails on the edges of letters in some fonts. These words are printed in a serif font.

Sans serif: Without the little tails. The phrase "Learn these font terms" above is printed in a sans serif font. In general, it's considered aesthetically sound to use either serif or sans serif for body text, and the opposite for headings.

Fixed pitch: All the letters take up exactly the same width, even the skinny little i's and the big fat m's. Most typewriters used fixed pitch, so the Courier font (which imitates typewriters) is fixed pitch. Program listings are also usually fixed pitch, since they are imitating the DOS text-mode monitors and their fixed pitch characters.

Proportional pitch: The opposite of fixed pitch; i's take up less space than m's. This paragraph was set in a proportional pitch font. You can get a lot more text in the same space if you use a proportional pitch font, unless the text consists almost entirely of m's.

Font families: Windows recognizes five font families. They are Roman (serif, proportional), Swiss (sans serif, proportional), Modern (fixed pitch, with or without serifs), Script (supposed to look like handwriting), and Decorative (like Olde English or Key Caps).

Whenever you request a device context in preparation for writing either on the screen or the printed page, it comes with a default font. For the display this is usually the "system font," the one that is used in menus and caption bars. Each kind of printer (or, rather, each printer driver) has a default font that it can most easily type. For older dot-matrix printers this was that awful dot-matrix font that was so beneficial to the optometric profession. Windows only approximates printer fonts on screen; the printer driver tells Windows which font family to use, and what size it is; Windows then makes a guess. Generally the guess is pretty good; modern printers' default font is usually either Courier or a Times Roman variant; Windows has both. Windows is still not truly a WYSIWYG environment, but it's so close it's been some time since I last heard anyone complain.

As the user of an application, you can safely pick whatever fonts you like if the application allows you to. You'll be presented with a list of available fonts; as long as you don't subsequently delete the font you chose, there won't be any problem. If you do delete the font, there still won't be much of a problem; Windows will just substitute, from the same font family if another font in that family is available. If the font you chose was Garamond, say, and Windows had to substitute with Times New Roman, you might not even notice the difference--especially on screen, where the coarser resolution hides a lot of sins.

As a programmer, you shouldn't request an oddball font unless you plan to include it with your application. And, if you are arranging your output according to character height, never assume Windows gave you just the font you asked for. Use the GetTextMetrics function to find out what size you really got.

Creating the Fonts Unit

Windows has always provided a choice of screen fonts and access to all the fonts your printer has built-in. But with Windows 3.1 and TrueType, the control your applications can have over the fonts they use can seem overwhelming. The tFont class can help you whelm.

The tFont class will reside in the FONTS.PAS unit. Here's the Interface section:

Unit Fonts;

	(***)

						Interface

	(***)

	Uses

		WinTypes,

		WinProcs,

		Objects,

		OWindows,

		OString,

		CommDlg,

		OPrinter,

		IniData;

	Type

		pFont = ^tFont;

		tFont = Object (tObject)

			LogFont: tLogFont;

			Font: hFont;

			Constructor Init;

			Constructor InitFont

				(

				Height: Integer;

				Bold, Italic, Inverted: Boolean;

				const FaceName: tOString

);

			Destructor Done; Virtual;

			Constructor Load (var S: tStream);

			Procedure Store (var S: tStream);

			Procedure ClearFont;

			Procedure RealizeFont (DC: hDC);

			Procedure SetFont

				(

				Height: Integer;

				Bold, Italic, Inverted: Boolean;

				const FaceName: tOString

);

			Function ChooseFont

				(aParent: pWindowsObject; Printer: pPrinter): Boolean;

			Procedure PutIni (var IniData: tIniData); Virtual;

			Procedure GetIni (var IniData: tIniData); Virtual;

			Function GetFont (DC: hDC): hFont;

			End;

As you can see, there are only two properties: a logical font structure, and a font handle. The logical font structure holds a rather complete description of the requested font. It is passed to CreateFontIndirect, which returns the handle to the font closest to the requested font that it could manage.

The basic constructor simply initializes the properties:

	Constructor tFont.Init;

		Begin

		Inherited Init;

		FillChar (LogFont, SizeOf (LogFont), #0);

		Font := 0;

		End;

The InitFont constructor is used when the desired font is a simple one, and its characteristics are known when the font object is constructed:

	Constructor tFont.InitFont

			(

			Height: Integer;

			Bold, Italic, Inverted: Boolean;

			const FaceName: tOString

);

		Begin

		Init;

		SetFont (Height, Bold, Italic, Inverted, FaceName);

		End;

This is a shortcut constructor, analogous to tOString.InitText.

The destructor clears the properties by invoking ClearFont, a method that will be invoked from several other places as well:

	Destructor tFont.Done;

		Begin

		ClearFont;

		Inherited Done;

		End;

ClearFont deletes the actual font if it was created; it also clears the values in the logical font structure:

	Procedure tFont.ClearFont;

		Begin

		If Font <> 0 then

			Begin

			DeleteObject (Font);

			Font := 0;

			End;

		FillChar (LogFont, SizeOf (LogFont), #0);

		End;

LogFont is designed so that zero values provide reasonable defaults for every field.

The Load and Store methods preserve the logical font structure, but Load only sets Font to zero:

	Constructor tFont.Load (var S: tStream);

		Begin

		S.Read (LogFont, SizeOf (LogFont));

		Font := 0;

		End;

	Procedure tFont.Store (var S: tStream);

		Begin

		S.Write (LogFont, SizeOf (LogFont));

		End;

A future call to GetFont will cause the font handle to be created:

	Function tFont.GetFont (DC: hDC): hFont;

		Begin

		If Font = 0 then

			RealizeFont (DC);

		GetFont := Font;

		End;

The device context is required by RealizeFont, not because CreateFontIndirect needs it--it doesn't--but because RealizeFont does.

The tmHeight field of the LogFont structure specifies the size of the font. If it contains a positive number, the value is taken to mean the size of the entire character cell, including the spacing around it. If tmHeight is a negative number, the number's absolute value is taken to mean the height of the character itself. But these values are in "logical units"; and logical units have no meaning in themselves. They must be converted to device units (pixels), and that can only happen in the presence of a device context.

Most of us are familiar with the concept of point sizes, enough to know that 8 point type is teeny but legible under most conditions, and that letters to elderly mothers-in-law should be set in 14 or 16 point type. I've designed the RealizeFont method so that the value you place in tmHeight will be treated as a point size, but I had to play tricks with mapping modes and extents to do it:

	Procedure tFont.RealizeFont (DC: hDC);

		Procedure CvtPointSize (var aPointSize: Integer);

			Var

				OldMapMode: Integer;

				OldWindowExt,

				OldViewportExt: LongInt;

				P: tPoint;

			Begin

			OldMapMode := SetMapMode (DC, mm_Anisotropic);

			OldWindowExt := SetWindowExt (DC, 1440, 1440);

			OldViewportExt := SetViewportExt (DC,

				GetDeviceCaps (DC, LogPixelsX),

				GetDeviceCaps (DC, LogPixelsY));

			P.x := 0;

			P.y := aPointSize * 20;

			LPtoDP (DC, P, 1);

			SetMapMode (DC, OldMapMode);

			SetWindowExt (DC,

				LoWord (OldWindowExt), HiWord (OldWindowExt));

			SetViewportExt (DC,

				LoWord (OldViewportExt), HiWord (OldViewportExt));

			DPtoLP (DC, P, 1);

			aPointSize := P.y;

			End;

		Var

			RequestedHeight: Integer;

		Begin

		RequestedHeight := LogFont.lfHeight;

		CvtPointSize (LogFont.lfHeight);

		Font := CreateFontIndirect (LogFont);

		LogFont.lfHeight := RequestedHeight;

		End;

Obviously, although CreateFontIndirect is invoked in the main code block, the work is done in the nested function CvtPointSize.

The first thing that happens in the nested function is that the device context is switched to what Charles Petzold, in the landmark book "Programming Windows," calls "Logical Twips Mapping Mode." When this mode is applied to a printer device context it is no different than mm_Twips, in which each logical unit is 1/20 of a point. (A point is about 1/72 of an inch, making a twip 1/1440 of an inch.) The magic of the logical twip is that, when this mapping mode is imposed on a screen device context, the units are somewhat larger to compensate for the fact that we typically view our monitors at about twice the distance we use to read sheets of paper. A true 8 point font on screen would be illegible; an 8 point screen font realized in the logical twips mapping mode can be read.

Each of the functions which manipulate the mapping mode returns the previous value. Most of the GDI functions do this, in fact. That's because it's considered good form to always restore a device context to the state in which you received it. For mapping modes this is just good manners; you may be passing that context to a number of different methods before you're done with it and each method should expect the context to be in mint condition.

Once logical twips map mode is in effect, we can make the tmHeight value equate to points by multiplying it by 20. (Remember, a twip is a twentieth of a point). But you probably won't be writing in logical twips mode. What we have to do is convert the points-times-20 value into device units while we're in logical twips mode, switch back into the mode in which the writing will be done, and convert the device units back into the new logical units, whatever they might be.

Now you know the other reason for saving the original map mode and extents: so we can switch back to complete the conversion.

After the conversion has been made and the font realized, we can restore the requested size to LogFont in case it has to be used again.

The LogFont structure has more fields in it than you would have thought could possibly be needed to describe a font. Most of them can be ignored, however. The SetFont method provides an easy way to specify your font requirements 99 percent of the time:

	Procedure tFont.SetFont

			(

			Height: Integer;

			Bold, Italic, Inverted: Boolean;

			const FaceName: tOString

);

		Begin

		ClearFont;

		LogFont.lfHeight := Height;

		LogFont.lfItalic := Byte (Italic);

		if Bold then

			LogFont.lfWeight := fw_Bold;

		if Inverted then

			Begin

			LogFont.lfOrientation := 1800;

			LogFont.lfEscapement := 1800;

			End;

		FaceName.GetTextC (LogFont.lfFaceName);

		End;

Not many applications take advantage of this, but fonts--especially TrueType fonts--can be rotated (orientation) and written out at any angle (escapement). To twist text around 180�SYMBOL 176 \f "Symbol"�, set both fields to 1800. You won't even have to invert the order of the letters! Just remember to position your inverted text where it starts--at the right, as you look at the page, not the left.

SetText provides a programmatic way of specifying a font. What about letting the user select his or her own? The Common Dialogs have a font choosing dialog for just that purpose. The only tricky part of using it relates to the point size conversions we were just talking about. You may want the font for a printer context, but the font selection dialog appears on the screen and it uses a screen context to preview the fonts. As such, it interprets the tmHeight field as logical units for the default mapping mode, mm_Text, in which logical units and device units are the same��pixels. Since we've been storing a point size in that field, we have to temporarily convert the value into mm_Text-style units, show the dialog box, then convert the size back.

Here's the ChooseFont method that does all this:

	Function tFont.ChooseFont

			(aParent: pWindowsObject; Printer: pPrinter): Boolean;

		Var

			FontData: tChooseFont;

			Escapement, Orientation: Integer;

			Success: Boolean;

			IC: hDC;

		Procedure PointsToPixels (var Height: Integer);

			Var

				P: tPoint;

			Begin

			IC := CreateIC ('Display', Nil, Nil, Nil);

			SetMapMode (IC, mm_Anisotropic);

			SetWindowExt (IC, 1440, 1440);

			SetViewportExt (IC,

				GetDeviceCaps (IC, LogPixelsX),

				GetDeviceCaps (IC, LogPixelsY));

			P.x := 0;

			P.y := Height * 20;

			LPtoDP (IC, P, 1);

			Height := P.y;

			End;

		Procedure PixelsToPoints (var Height: Integer);

			Var

				P: tPoint;

			Begin

			P.x := 0;

			P.y := Height;

			DPtoLP (IC, P, 1);

			Height := P.y div 20;

			DeleteDC (IC);

			End;

		Begin

		If Font <> 0 then

			Begin

			DeleteObject (Font);

			Font := 0;

			End;

		Escapement := LogFont.lfEscapement;

		Orientation := LogFont.lfOrientation;

		With FontData do

			Begin

			lStructSize := SizeOf (FontData);

			hWndOwner := aParent^.hWindow;

			hDC := Printer^.GetDC;

			lpLogFont := @LogFont;

			Flags := cf_PrinterFonts or

				cf_ForceFontExist or

				cf_InitToLogFontStruct or

				cf_LimitSize or

				cf_ShowHelp;

			hInstance := System.hInstance;

			nSizeMin := 6;

			nSizeMax := 128;

			End;

		PointsToPixels (LogFont.lfHeight);

		Success := CommDlg.ChooseFont (FontData);

		PixelsToPoints (LogFont.lfHeight);

		LogFont.lfEscapement := Escapement;

		LogFont.lfOrientation := Orientation;

		DeleteDC (FontData.hDC);

		ChooseFont := Success;

		End;

In the main code block, we start by deleting any old font that might have been realized. We also have to save the Escapement and Orientation, because the Choose Font dialog doesn't use them and resets them to zero. Having saved them, we can restore the values afterward.

Like all of the Common Dialogs, Choose Font is controlled by values and flags placed in a data structure. In this case the structure is called FontData (of type tChooseFont). Finally, just before activating the dialog box, we call PointsToPixels to make the conversion.

PointsToPixels creates an information context for the screen, the environment in which the dialog will appear. An information context is like a device context, except you can't write to it. It's supposed to be less draining of system resources, so you should use an information context instead of a device context any time you only want information. We switch the context to logical twips mode, multiply the requested points by 20 and, convert them to device points.

The dialog box will create its own device context for the screen, using, as I said, mm_Text mapping mode in which device and logical units are equivalent. Thus the converted tmHeight value will be meaningful, and a proper starting-off point for the dialog box.

After the Choose Font dialog completes its job, we convert the (possibly changed) value in tmHeight back into twips, then points, and get rid of the information context. We restore the Escapement and Orientation values, delete the device context ChooseFont creates as a byproduct, and return.

The Load and Store methods allow a tFont object's properties to be saved in a file; but often it is preferred that they be kept in a .INI file. Taking advantage of the tIniData class we wrote in Chapter 6, the PutIni method allows the important fields of the LogFont structure to be preserved:

	Procedure tFont.PutIni (var IniData: tIniData);

		Procedure SetKeyedValue (const aKey: String; aValue: Integer);

			Var

				Value: tOString;

			Begin

			Value.Init (8);

			Value.SetTextN (aValue);

			IniData.SetKeyP (aKey);

			IniData.SetValue (Value);

			Value.Done;

			End;

		Begin

		SetKeyedValue ('Height', LogFont.lfHeight);

		SetKeyedValue ('Width', LogFont.lfWidth);

		SetKeyedValue ('Weight', LogFont.lfWeight);

		SetKeyedValue ('Italic', LogFont.lfItalic);

		SetKeyedValue ('Escapement', LogFont.lfEscapement);

		SetKeyedValue ('Orientation', LogFont.lfOrientation);

		IniData.SetKeyP ('FaceName');

		IniData.SetValueC (LogFont.lfFaceName);

		End;

It is assumed the IniData object passed to this method will already have had the proper filename and section set. Likewise, for GetIni:

	Procedure tFont.GetIni (var IniData: tIniData);

		Function GetKeyedValue (const aKey: String): Integer;

			Var

				Value: tOString;

			Begin

			IniData.SetKeyP (aKey);

			GetKeyedValue := IniData.Value.GetTextN;

			End;

		Begin

		ClearFont;

		LogFont.lfHeight := GetKeyedValue ('Height');

		LogFont.lfWidth := GetKeyedValue ('Width');

		LogFont.lfWeight := GetKeyedValue ('Weight');

		LogFont.lfItalic := GetKeyedValue ('Italic');

		LogFont.lfEscapement := GetKeyedValue ('Escapement');

		LogFont.lfOrientation := GetKeyedValue ('Orientation');

		IniData.SetKeyP ('FaceName');

		IniData.Value.GetTextC (LogFont.lfFaceName);

		End;

To close up the unit, create a registration record and register the new class:

	Const

		rFont: tStreamRec =

			(

			ObjType: 13003;

			VmtLink: Ofs (TypeOf (tFont)^);

			Load: @tFont.Load;

			Store: @tFont.Store

);

	Begin

	RegisterType (rFont);

	End.

Printing Envelopes

Printing in ObjectWindows means deriving a specialized class from tPrintout. The simplest documents are single-paged; so our first printing task will be that of addressing envelopes. Even so, that will present the opportunity to directly modify the device mode data structure.

There are two aspects to the task of printing envelopes: page setup and the printing chore itself. It would be nice to save the page setup so the user won't have to repeat the process every session. By combining the two aspects into a tEnvelopePrintout class, and giving the class the ability to load and store itself, we can make an object of this class a permanent part of the Addressatron file structure like the address items themselves or the return address.

The tEnvelopePrintout class is implemented in the PRTENV.PAS unit. The Interface section looks like this:

Unit PrtEnv;

	(***)

						Interface

	(***)

	Uses

		WinTypes,

		WinProcs,

		Objects,

		OWindows,

		ODialogs,

		OPrinter,

		Validate,

		Strings,

		OString,

		Controls,

		DlgApp,

		AddrData,

		Return,

		Fonts;

	Type

		pEnvelopePrintout = ^tEnvelopePrintout;

		tEnvelopePrintout = Object (tPrintout)

			ReturnFont,

			AddressFont: tFont;

			ReturnRect,

			AddressRect: tRect;

			Item: pItem;

			Return: pOString;

			Constructor Init;

			Destructor Done; Virtual;

			Constructor Load (var S: tStream);

			Procedure Store (var S: tStream);

			Function GetDialogInfo (var Pages: Integer): Boolean; Virtual;

			Procedure PrintPage

				(Page: Word; var Rect: tRect; Flags: Word); Virtual;

			Procedure SetTitle

				(

				aParent: pDlgAppWindow;

				aItem: pItem;

				aReturn: pOString

);

			Function Setup (aParent: pWindowsObject): Boolean;

			End;

The page setup dialog for envelopes is represented in the Implementation section by the tEnvelopeSetupDlg class. This class is defined, along with the constants for the associated dialog box, in the Implementation section because it is invoked by tEnvelopePrintout.Setup; there's no need to export it:

	(***)

					Implementation

	(***)

	Const

		id_ReturnTop = 101;

		id_ReturnLeft = 102;

		id_ReturnFont = 103;

		id_AddressTop = 104;

		id_AddressLeft = 105;

		id_AddressFont = 106;

	Type

		pEnvelopeSetupDlg = ^tEnvelopeSetupDlg;

		tEnvelopeSetupDlg = Object (tDialog)

			ReturnTop,

			ReturnLeft: tXEdit;

			ReturnFont: tXButton;

			AddressTop,

			AddressLeft: tXEdit;

			AddressFont: tXButton;

			InchValidator: tPXPictureValidator;

			XBuffer: Record

				ReturnTop,

				ReturnLeft,

				AddressTop,

				AddressLeft: tOString;

				ReturnFont,

				AddressFont: pFont;

				End;

			Constructor Init (aParent: pWindowsObject);

			Destructor Done; Virtual;

			Procedure SetReturnFont (var Msg: tMessage);

				Virtual id_First + id_ReturnFont;

			Procedure SetAddressFont (var Msg: tMessage);

				Virtual id_First + id_AddressFont;

			End;

tEnvelopePrintout references four true properties and two pointers to other objects needed to print envelopes. Of the four properties, two are tFont objects and two are rectangles that place where, on the physical envelope, the return address and mailing address are to be placed.

Like the other stored objects in Addressatron, when tMainDlg.FileNew is invoked, tEnvelopePrintout's constructor will be invoked:

	Constructor tEnvelopePrintout.Init;

		Var

			FaceName: tOString;

		Begin

		Inherited Init ('tEnvelopePrintout');

		FaceName.InitTextP ('Times New Roman');

		ReturnFont.InitFont (-10, False, True, False, FaceName);

		AddressFont.InitFont (-12, False, False, False, FaceName);

		FaceName.Done;

		ReturnRect.Left := 0;

		ReturnRect.Top := 50;

		ReturnRect.Right := 450;

		ReturnRect.Bottom := 200;

		AddressRect.Left := 350;

		AddressRect.Top := 200;

		AddressRect.Right := 650;

		AddressRect.Bottom := 350;

		Item := Nil;

		Return := Nil;

		End;

The inherited Init constructor from tPrintout accepts a single parameter: a CString pointer to a job title. This title will appear in the printing message box and the Print Manager's log line. Actually, it won't; we override that behavior in tEnvelopePrintout. But the ancestor class doesn't know that; so we give it a title to make it happy, anyway. We'll change it, later, in the SetTitle method.

The font and rectangle properties are given reasonable defaults, and the pointer properties are set to Nil. They will be given real values later.

Of all the properties, only the two fonts are objects that are "owned" by tEnvelopePrintout; only these must be disposed of in the destructor:

	Destructor tEnvelopePrintout.Done;

		Begin

		ReturnFont.Done;

		AddressFont.Done;

		Inherited Done;

		End;

The Load and Store methods provide the means to save the tEnvelopePrintout object between Addressatron sessions. The tPrintout class has no Load or Store methods; apparently its designers didn't think anyone would ever store one of these objects, because there is an inherited property that must be stored: Title. tPrintout's constructor also initializes other properties. Therefore, since there is no inherited Load constructor to invoke, we have to invoke the inherited Init constructor:

	Constructor tEnvelopePrintout.Load (var S: tStream);

		Var

			Buffer: tOString;

		Begin

		Buffer.Load (S);

		Inherited Init (Buffer.CString);

		Buffer.Done;

		ReturnFont.Load (S);

		AddressFont.Load (S);

		S.Read (ReturnRect, SizeOf (ReturnRect));

		S.Read (AddressRect, SizeOf (AddressRect));

		End;

The only inherited property that we bother to save is Title. Although in this implementation the title is set when a print job is started, you might want to add a user-defined title to the page setup and keep it. Otherwise, Store is the expected mirror image of Load:

	Procedure tEnvelopePrintout.Store (var S: tStream);

		Var

			Buffer: tOString;

		Begin

		Buffer.InitTextC (Title);

		Buffer.Store (S);

		Buffer.Done;

		ReturnFont.Store (S);

		AddressFont.Store (S);

		S.Write (ReturnRect, SizeOf (ReturnRect));

		S.Write (AddressRect, SizeOf (AddressRect));

		End;

 GetDialogInfo overrides the ancestor method to set the number of pages to 1. (The default method returns zero, suggesting that the actual number of pages is unknown.) The method returns False to indicate that there's no need for a print parameters dialog box. Such a dialog box would provide the user a chance to specify a page range or number of copies; these options do not apply to the printing of a single envelope.

tPrintout provides several other virtual methods which we could override if needed. BeginPrint and EndPrint are invoked once each per print job. BeginDocument and EndDocument are invoked once each per document copy. The default methods perform no action and, in the case of tEnvelopePrintout, none is needed so we don't replace them.

In fact, the only tPrintout method which we are required to replace is PrintPage. This method is invoked once for each page of the document, and its the one where printing actually takes place:

	Procedure tEnvelopePrintout.PrintPage

			(Page: Word; var Rect: tRect; Flags: Word);

		Var

			OldFont: tHandle;

		Begin

		SetPageMapMode (DC);

		OldFont := SelectObject (DC, ReturnFont.GetFont (DC));

		DrawText (DC, Return^.CString, Return^.Length,

			ReturnRect, dt_Left or dt_NoPrefix);

		SelectObject (DC, AddressFont.GetFont (DC));

		DrawText (DC, Item^.MailLabel.CString, Item^.MailLabel.Length,

			AddressRect, dt_Left or dt_NoPrefix);

		SelectObject (DC, OldFont);

		End;

A tPrintout option we will not take advantage of is banding. This is a technique whereby complex images are generated in horizontal bands, rather than a whole page at a time. If we were to make use of this, the PrintPage Rect and Flags parameters would make it possible. With Banding set to False, as it is by default, these parameters have no meaning. Banding should never be required for a document that is mostly text.

Another tPrintout property, DC, contains the printer device context. We set our page map mode, replace the default font with the one the user has selected for return addresses, and use the GDI DrawText function to place the return address on the envelope. We switch to the mailing address font and DrawText places it as well. DrawText can accommodate the fact that Return and Item^.MailLabel strings contain embedded carriage returns. We then replace the original font and we're done. (We don't have to replace the mapping mode because tPrintout guarantees us that no other object will use this device context.)

 But it is vital that you not release a device context into which you've selected a created object, such as a font. When the device context is first created, it contains only stock objects--standard fonts, pens, and so on--which should not be destroyed. Therefore, the device context does not destroy any objects it contains when you release it. If you don't destroy them, they go on taking up memory even after your application has closed (GDI objects belong to the GDI, not to an application; so they don't vanish when the app that created them does). And since you can only delete a GDI object that is no longer selected into a device context, your only chance to delete them is to do it before you free the context.

But there's no "unselect" function. Like nature, GDI objects abhor a vacuum. You can't remove, say, a font object without replacing it with another font object. The sensible object to replace it with is the one you replaced earlier. Thus, we save the old font handle.

Normally, a tPrintout object is created, used, and destroyed. That's why you pass the document title to the constructor, and why there's no Load and Store methods. But a tEnvelopePrintout object is expected to last throughout a session, and it may be used many times for different addresses. Thus we provide a SetTitle method; this method also sets the Item and Return pointers--jobs that would have been done in the constructor of a shorter-lived tPrintout descendent:

	Procedure tEnvelopePrintout.SetTitle

			(

			aParent: pDlgAppWindow;

			aItem: pItem;

			aReturn: pOString

);

		Var

			Caption: tOString;

		Begin

		Caption.InitText (aParent^.BaseCaption);

		Caption.AppendP (' - ');

		Caption.Append (aItem^);

		StrDispose (Title);

		Title := StrNew (Caption.CString);

		Caption.Done;

		Item := aItem;

		Return := aReturn;

		End;

The title is composed of the application's BaseCaption appended with the name associated with the address.

The final tEnvelopePrintout method is invoked in response to a File..Page Setup command:

	Function tEnvelopePrintout.Setup (aParent: pWindowsObject): Boolean;

		Var

			Dlg: tEnvelopeSetupDlg;

		Procedure FormatInches (var Buffer: tOString; Value: Integer);

			Var

				P: String[8];

			Begin

			Str (Value, P);

			While Length (P) < 4 do

				P := '0' + P;

			Buffer.SetTextP (Copy (P, 1, 2) + '.' + Copy (P, 3, 2) + '"');

			End;

		Function UnformatInches (Value: String): Integer;

			Var

				V, Code: Integer;

			Begin

			Val (Copy (Value, 1, 2) + Copy (Value, 4, 2), V, Code);

			UnformatInches := V;

			End;

		Begin

		Setup := False;

		Dlg.Init (aParent);

		FormatInches (Dlg.XBuffer.ReturnTop, ReturnRect.Top);

		FormatInches (Dlg.XBuffer.ReturnLeft, ReturnRect.Left);

		FormatInches (Dlg.XBuffer.AddressTop, AddressRect.Top);

		FormatInches (Dlg.XBuffer.AddressLeft, AddressRect.Left);

		Dlg.XBuffer.ReturnFont := @ReturnFont;

		Dlg.XBuffer.AddressFont := @AddressFont;

		If Dlg.Execute = idOK then

			Begin

			ReturnRect.Top :=

				UnformatInches (Dlg.XBuffer.ReturnTop.PString);

			ReturnRect.Left :=

				UnformatInches (Dlg.XBuffer.ReturnLeft.PString);

			AddressRect.Top :=

				UnformatInches (Dlg.XBuffer.AddressTop.PString);

			AddressRect.Left :=

				UnformatInches (Dlg.XBuffer.AddressLeft.PString);

			Setup := True;

			End;

		Dlg.Done;

		End;

The nested procedures FormatInches and UnformatInches provide a means of switching between the hundredths-of-an-inch logical units tEnvelopePrintout uses internally, and the fractional inches users will be more comfortable with. Once the Dlg object has been created, the present values are copied into the dialog's transfer buffer; after the dialog has closed, if the user clicked the OK button the new values are retrieved from there.

Before we get to the tEnvelopeSetupDlg class, don't forget the registration record for tEnvelopePrintout:

	Const

		rEnvelopePrintout: tStreamRec =

			(

			ObjType: 13004;

			VmtLink: Ofs (TypeOf (tEnvelopePrintout)^);

			Load: @tEnvelopePrintout.Load;

			Store: @tEnvelopePrintout.Store

);

As you saw from tEnvelopeSetupDlg's definition, there are several control objects. The dialog box template is shown in Figure 13.5.

�EMBED MSPowerPoint \s * mergeformat���

Figure 13.5. The EnvelopeSetup dialog template.

The constructor simply initializes each of those control objects; it also creates a single picture Validator object and assigns its address to the Validator pointer of each of the edit control objects:

	Constructor tEnvelopeSetupDlg.Init (aParent: pWindowsObject);

		Begin

		Inherited Init (aParent, 'EnvelopeSetup');

		ReturnTop.InitResource (@Self, id_ReturnTop, 7);

		ReturnLeft.InitResource (@Self, id_ReturnLeft, 7);

		ReturnFont.InitResource (@Self, id_ReturnFont);

		AddressTop.InitResource (@Self, id_AddressTop, 7);

		AddressLeft.InitResource (@Self, id_AddressLeft, 7);

		AddressFont.InitResource (@Self, id_AddressFont);

		InchValidator.Init ('##;.##;"', True);

		ReturnTop.Validator := @InchValidator;

		ReturnLeft.Validator := @InchValidator;

		AddressTop.Validator := @InchValidator;

		AddressLeft.Validator := @InchValidator;

		XBuffer.ReturnTop.Init (8);

		XBuffer.ReturnLeft.Init (8);

		XBuffer.AddressTop.Init (8);

		XBuffer.AddressLeft.Init (8);

		TransferBuffer := @XBuffer;

		End;

What we've done seems simple enough; why create four identical validators for four edit controls? But the tEdit.Done method actually disposes of a validator "for" you. If you think this is being a tad too solicitous, I agree. To get around this, we have to replace the validator address with Nil before we destroy the edit control objects:

	Destructor tEnvelopeSetupDlg.Done;

		Begin

		ReturnTop.Validator := Nil;

		ReturnLeft.Validator := Nil;

		AddressTop.Validator := Nil;

		AddressLeft.Validator := Nil;

		ReturnTop.Done;

		ReturnLeft.Done;

		ReturnFont.Done;

		AddressTop.Done;

		AddressLeft.Done;

		AddressFont.Done;

		InchValidator.Done;

		XBuffer.ReturnTop.Done;

		XBuffer.ReturnLeft.Done;

		XBuffer.AddressTop.Done;

		XBuffer.AddressLeft.Done;

		Inherited Done;

		End;

Finally, if the user selects either of the two Font buttons, the appropriate font's ChooseFont method is invoked:

	Procedure tEnvelopeSetupDlg.SetReturnFont (var Msg: tMessage);

		Begin

		XBuffer.ReturnFont^.ChooseFont

			(@Self, @pDlgAppWindow (Parent)^.Printer);

		End;

	Procedure tEnvelopeSetupDlg.SetAddressFont (var Msg: tMessage);

		Begin

		XBuffer.AddressFont^.ChooseFont

			(@Self, @pDlgAppWindow (Parent)^.Printer);

		End;

We close the unit by registering the tEnvelopePrintout class:

	Begin

	RegisterType (rEnvelopePrintout);

	End.

Now all we have to do is add a tEnvelopePrintout object to tMainDlg. We start with the property itself:

	Type

		pMainDlg = ^tMainDlg;

		tMainDlg = Object (tDlgAppWindow)

				Ú

				Ú

			EnvelopePrintout: pEnvelopePrintout;

				Ú

				Ú

			Procedure cmFilePrintEnvelope (var Msg: tMessage);

				Virtual cm_First + cm_FilePrint;

			Procedure cmFilePageSetupEnvelope (var Msg: tMessage);

				Virtual cm_First + cm_FilePageSetup;

			End;

Set the pointer to Nil in the constructor:

	Constructor tMainDlg.Init;

				Ú

				Ú

		Begin

				Ú

				Ú

		EnvelopePrintout := Nil;

		End;

Init the object in FileNew and Get it in FileOpen:

	Procedure tMainDlg.FileNew;

		Begin

				Ú

				Ú

		EnvelopePrintout := New (pEnvelopePrintout, Init);

		End;

	Procedure tMainDlg.FileOpen;

				Ú

				Ú

		Begin

		Inherited FileOpen;

		S.Init (Datafile.Pathname.CString, stOpenRead, 2048);

		ItemsData := pSortedOCollection (S.Get);

		ClosingData := pSortedOCollection (S.Get);

		ReturnAddress := pOString (S.Get);

		EnvelopePrintout := pEnvelopePrintout (S.Get);

		S.Done;

				Ú

				Ú

		End;

Put it in FileSave and dispose of it in FileClose:

	Procedure tMainDlg.FileSave;

		Var

			S: tBufStream;

		Begin

		SelectItem (Items.GetSelIndex);

		Inherited FileSave;

		S.Init (Datafile.Pathname.CString, stCreate, 2048);

		S.Put (ItemsData);

		S.Put (ClosingData);

		S.Put (ReturnAddress);

		S.Put (EnvelopePrintout);

		S.Done;

		End;

	Procedure tMainDlg.FileClose;

		Begin

				Ú

				Ú

		If Assigned (EnvelopePrintout) then

			Begin

			Dispose (EnvelopePrintout, Done);

			EnvelopePrintout := Nil;

			End;

		Inherited FileClose;

		End;

In the cmFilePrintEnvelope command handler, we have to make a small manipulation to the printer parameters. Most printers have a special method of manually feeding envelopes; we need to turn that on. The Printer object has a method, Configure, which adjusts printer characteristics but it brings up the printer Setup dialog box to do so. We want to make the change quietly:

	Procedure tMainDlg.cmFilePrintEnvelope (var Msg: tMessage);

		Var

			OldDefaultSource: Integer;

		Begin

		With Printer do

			If Assigned (@ExtDeviceMode) then

				Begin

				OldDefaultSource := DevSettings^.dmDefaultSource;

				DevSettings^.dmDefaultSource := dmbin_EnvManual;

				ExtDeviceMode (HWindow,

					DeviceModule,

					DevSettings^,

					Device,

					Port,

					DevSettings^,

					Nil,

					dm_In_Buffer or dm_Out_Buffer

);

				End;

		EnvelopePrintout^.SetTitle (@Self, ActiveItem, ReturnAddress);

		Printer.Print (@Self, EnvelopePrintout);

		With Printer do

			If Assigned (@ExtDeviceMode) then

				Begin

				DevSettings^.dmDefaultSource := OldDefaultSource;

				ExtDeviceMode (HWindow,

					DeviceModule,

					DevSettings^,

					Device,

					Port,

					DevSettings^,

					Nil,

					dm_In_Buffer or dm_Out_Buffer

);

				End;

		End;

ExtDeviceMode does the trick...if it's there. Printer drivers older than Windows 3.0 did not support this function, and when used with such a driver the tPrinter class will set the ExtDeviceMode to Nil. If it's supplied, though, we save the previous value of the dmDefaultSource field, restoring it after the envelope has been printed.

By comparison, the cmFilePageSetupEnvelope command handler is very simple:

	Procedure tMainDlg.cmFilePageSetupEnvelope (var Msg: tMessage);

		Begin

		If EnvelopePrintout^.Setup (@Self) then

			Datafile.Dirty := true;

		End;

At this point, the envelope-printing enhancement is complete. If you comment out the setting of the default paper source, you can practice on sheets of paper instead of the more expensive envelopes.

Printing Return Labels and Mailing Labels

Printing a page of return-address labels, and printing pages of mailing labels, are such similar tasks that we can implement them as two classes, one derived from the other.

The PRTLBL.PAS unit is very similar to the PRTENV unit. Its Interface section looks like this:

Unit PrtLbl;

	(***)

						Interface

	(***)

	Uses

		WinTypes,

		WinProcs,

		Objects,

		OWindows,

		ODialogs,

		OPrinter,

		Validate,

		Strings,

		OString,

		Controls,

		DlgApp,

		AddrData,

		Return,

		Fonts;

	Type

		pLabelPrintout = ^tLabelPrintout;

		tLabelPrintout = Object (tPrintout)

			LabelFont: tFont;

			Rows, Columns: Byte;

			PrintArea: tRect;

			Item: pOString;

			Constructor Init;

			Destructor Done; Virtual;

			Constructor Load (var S: tStream);

			Procedure Store (var S: tStream);

			Function Setup (aParent: pWindowsObject): Boolean;

			Function GetDialogInfo (var Pages: Integer): Boolean; Virtual;

			Procedure PrintPage (Page: Word; var Rect: tRect; Flags: Word); Virtual;

			Procedure SetTitle

				(

				aParent: pDlgAppWindow;

				aItem: pOString

);

			End;

	Type

		pMailingLabelPrintout = ^tMailingLabelPrintout;

		tMailingLabelPrintout = Object (tLabelPrintout)

			ItemsPrinted: Word;

			ItemsData: pSortedCollection;

			Function GetDialogInfo (var Pages: Integer): Boolean; Virtual;

			Function HasNextPage (Page: Word): Boolean; Virtual;

			Procedure PrintPage (Page: Word; var Rect: tRect; Flags: Word); Virtual;

			Procedure SetTitle

				(

				aParent: pDlgAppWindow;

				anItemsData: pSortedCollection

);

			End;

Like PRTENV, it also has a page setup dialog class hidden in its Implementation section:

	(***)

					Implementation

	(***)

	Const

		id_Rows = 101;

		id_Columns = 102;

		id_Top = 103;

		id_Left = 104;

		id_Right = 105;

		id_Bottom = 106;

		id_Font = 107;

	Type

		pLabelSetupDlg = ^tLabelSetupDlg;

		tLabelSetupDlg = Object (tDialog)

			Rows,

			Columns,

			Top,

			Left,

			Right,

			Bottom: tXEdit;

			Font: tXButton;

			InchValidator: tPXPictureValidator;

			XBuffer: Record

				Rows,

				Columns,

				Top,

				Left,

				Right,

				Bottom: tOString;

				Font: pFont;

				End;

			Constructor Init (aParent: pWindowsObject);

			Destructor Done; Virtual;

			Procedure SetFont (var Msg: tMessage);

				Virtual id_First + id_Font;

			End;

There's only one because, even though the two printouts will each have its own setup, they can use the same dialog.

The tLabelPrintout class, which we'll use for printing return address labels, is the base class. It's constructor and destructor are as expected:

	Constructor tLabelPrintout.Init;

		Var

			FaceName: tOString;

		Begin

		Inherited Init ('tLabelPrintout');

		FaceName.InitTextP ('Times New Roman');

		LabelFont.InitFont (-10, False, True, False, FaceName);

		FaceName.Done;

		Rows := 10;

		Columns := 2;

		PrintArea.Top := 50;

		PrintArea.Bottom := 1050;

		PrintArea.Left := 25;

		PrintArea.Right := 825;

		Item := Nil;

		End;

	Destructor tLabelPrintout.Done;

		Begin

		LabelFont.Done;

		Inherited Done;

		End;

I've initialized the label font with Times New Roman Italic. This TrueType font comes with Windows 3.1 so users should have it available; and it looks nice on labels.

The Load and Store methods are similar to their counterparts in PRTENV, as well:

	Constructor tLabelPrintout.Load (var S: tStream);

		Var

			Buffer: tOString;

		Begin

		Buffer.Load (S);

		Inherited Init (Buffer.CString);

		Buffer.Done;

		LabelFont.Load (S);

		S.Read (Rows, SizeOf (Rows));

		S.Read (Columns, SizeOf (Columns));

		S.Read (PrintArea, SizeOf (PrintArea));

		Item := Nil;

		End;

	Procedure tLabelPrintout.Store (var S: tStream);

		Var

			Buffer: tOString;

		Begin

		Buffer.InitTextC (Title);

		Buffer.Store (S);

		Buffer.Done;

		LabelFont.Store (S);

		S.Write (Rows, SizeOf (Rows));

		S.Write (Columns, SizeOf (Columns));

		S.Write (PrintArea, SizeOf (PrintArea));

		End;

The Setup method is also similar, given that the Setup Labels dialog has more controls:

	Function tLabelPrintout.Setup (aParent: pWindowsObject): Boolean;

		Var

			Dlg: tLabelSetupDlg;

		Procedure FormatInches (var Buffer: tOString; Value: Integer);

			Var

				P: String[8];

			Begin

			Str (Value, P);

			While Length (P) < 4 do

				P := '0' + P;

			Buffer.SetTextP (Copy (P, 1, 2) + '.' + Copy (P, 3, 2) + '"');

			End;

		Function UnformatInches (Value: String): Integer;

			Var

				V, Code: Integer;

			Begin

			Val (Copy (Value, 1, 2) + Copy (Value, 4, 2), V, Code);

			UnformatInches := V;

			End;

		Begin

		Setup := False;

		Dlg.Init (aParent);

		Dlg.XBuffer.Rows.SetTextN (Rows);

		Dlg.XBuffer.Columns.SetTextN (Columns);

		FormatInches (Dlg.XBuffer.Top, PrintArea.Top);

		FormatInches (Dlg.XBuffer.Left, PrintArea.Left);

		FormatInches (Dlg.XBuffer.Right, PrintArea.Right);

		FormatInches (Dlg.XBuffer.Bottom, PrintArea.Bottom);

		Dlg.XBuffer.Font := @LabelFont;

		If Dlg.Execute = idOK then

			Begin

			Rows := Dlg.XBuffer.Rows.GetTextN;

			Columns := Dlg.XBuffer.Columns.GetTextN;

			PrintArea.Top := UnformatInches (Dlg.XBuffer.Top.PString);

			PrintArea.Left := UnformatInches (Dlg.XBuffer.Left.PString);

			PrintArea.Right := UnformatInches (Dlg.XBuffer.Right.PString);

			PrintArea.Bottom := UnformatInches

				(Dlg.XBuffer.Bottom.PString);

			Setup := True;

			End;

		Dlg.Done;

		End;

However, unlike tEnvelopePrintout, tLabelPrintout wants to give the user an opportunity to select the number of pages on which to print return address labels. GetDialogInfo arranges this by returning True instead of False:

	Function tLabelPrintout.GetDialogInfo (var Pages: Integer): Boolean;

		Begin

		Pages := 1;

		GetDialogInfo := True;

		End;

The PrintPage method calculates the position of each label based on the stated print area and the number of rows and columns of labels on the page:

	Procedure tLabelPrintout.PrintPage

			(Page: Word; var Rect: tRect; Flags: Word);

		Var

			OldFont: tHandle;

			Column, Row: Word;

			LabelHeight, LabelWidth: Word;

		Procedure PrintLabel;

			Var

				Rect: tRect;

			Begin

			Rect.Top := PrintArea.Top + ((Row - 1) * LabelHeight);

			Rect.Bottom := PrintArea.Top + (Row * LabelHeight);

			Rect.Left := PrintArea.Left + ((Column - 1) * LabelWidth);

			Rect.Right := PrintArea.Left + (Column * LabelWidth);

			DrawText (DC, Item^.CString, Item^.Length,

				Rect, dt_Left or dt_NoPrefix);

			End;

		Begin

		SetPageMapMode (DC);

		OldFont := SelectObject (DC, LabelFont.GetFont (DC));

		LabelHeight := (PrintArea.Bottom - PrintArea.Top) div Rows;

		LabelWidth := (PrintArea.Right - PrintArea.Left) div Columns;

		For Column := 1 to Columns do

			For Row := 1 to Rows do

				PrintLabel;

		SelectObject (DC, OldFont);

		End;

SetTitle is simpler than tEnvelopePrintout's because it just uses the entire caption, including file name, as the printout title:

	Procedure tLabelPrintout.SetTitle

			(

			aParent: pDlgAppWindow;

			aItem: pOString

);

		Var

			Caption: tOString;

		Begin

		Caption.InitTextW (aParent);

		StrDispose (Title);

		Title := StrNew (Caption.CString);

		Caption.Done;

		Item := aItem;

		End;

Don't forget the registration record:

	Const

		rLabelPrintout: tStreamRec =

			(

			ObjType: 13007;

			VmtLink: Ofs (TypeOf (tLabelPrintout)^);

			Load: @tLabelPrintout.Load;

			Store: @tLabelPrintout.Store

);

The mailing labels will be printed by a class which descends from tLabelPrintout. I call it tMailingLabelPrintout. It only overrides four methods from its ancestors. The first is GetDialogInfo, which actually calculates the number of pages that will be required, based on the number of items in the collection which do not have blank address fields:

	Function tMailingLabelPrintout.GetDialogInfo

			(var Pages: Integer): Boolean;

		Var

			Count, c: Word;

		Begin

		Count := 0;

		For c := 1 to ItemsData^.Count do

			If pItem (ItemsData^.At (c-1))^.MailLabel.Length > 0 then

				Inc (Count);

		Pages := Count div (Rows * Columns);

		If (Count mod (Rows * Columns)) <> 0 then

			Inc (Pages);

		GetDialogInfo := True;

		End;

tPrintout does not rely on that page count, however. It invokes a virtual method, HasNextPage, as each page completes to determine if there is another one. The default method always returns False, which is suitable for single-page documents. We must override it, however:

	Function tMailingLabelPrintout.HasNextPage (Page: Word): Boolean;

		Begin

		HasNextPage := (ItemsPrinted < ItemsData^.Count);

		End;

The new PrintPage method has to obtain the proper mailing labels from the collection and print them in order:

	Procedure tMailingLabelPrintout.PrintPage

			(Page: Word; var Rect: tRect; Flags: Word);

		Var

			OldFont: tHandle;

			Column, Row: Word;

			LabelHeight, LabelWidth: Word;

		Procedure PrintLabel (var Item: tOString);

			Var

				Rect: tRect;

			Begin

			Rect.Top := PrintArea.Top + ((Row - 1) * LabelHeight);

			Rect.Bottom := PrintArea.Top + (Row * LabelHeight);

			Rect.Left := PrintArea.Left + ((Column - 1) * LabelWidth);

			Rect.Right := PrintArea.Left + (Column * LabelWidth);

			DrawText (DC, Item.CString, Item.Length,

				Rect, dt_Left or dt_NoPrefix);

			End;

		Begin

		SetPageMapMode (DC);

		OldFont := SelectObject (DC, LabelFont.GetFont (DC));

		LabelHeight := (PrintArea.Bottom - PrintArea.Top) div Rows;

		LabelWidth := (PrintArea.Right - PrintArea.Left) div Columns;

		For Column := 1 to Columns do

			For Row := 1 to Rows do

				Begin

				Inc (ItemsPrinted);

				While (ItemsPrinted <= ItemsData^.Count) and

						(pItem (ItemsData^.At

							(ItemsPrinted-1))^.MailLabel.Length = 0) do

					Inc (ItemsPrinted);

				If ItemsPrinted <= ItemsData^.Count then

					PrintLabel (pItem (ItemsData^.At

						(ItemsPrinted-1))^.MailLabel);

				End;

		SelectObject (DC, OldFont);

		End;

The overriding SetTitle provides the Items collection:

	Procedure tMailingLabelPrintout.SetTitle

			(

			aParent: pDlgAppWindow;

			anItemsData: pSortedCollection

);

		Var

			Caption: tOString;

		Begin

		Caption.InitTextW (aParent);

		StrDispose (Title);

		Title := StrNew (Caption.CString);

		Caption.Done;

		ItemsPrinted := 0;

		ItemsData := anItemsData;

		End;

This class must have a registration record of its own:

	Const

		rMailingLabelPrintout: tStreamRec =

			(

			ObjType: 13008;

			VmtLink: Ofs (TypeOf (tMailingLabelPrintout)^);

			Load: @tMailingLabelPrintout.Load;

			Store: @tMailingLabelPrintout.Store

);

The Label Setup dialog template is shown in Figure 13.6.

�EMBED MSPowerPoint \s * mergeformat���

Figure 13.6. The Label Setup dialog template.

tLabelSetupDlg's constructor and destructor have the same problem with a single validator that we saw in the previous section, with the same solution:

	Constructor tLabelSetupDlg.Init (aParent: pWindowsObject);

		Begin

		Inherited Init (aParent, 'LabelsSetup');

		Rows.InitResource (@Self, id_Rows, 7);

		Columns.InitResource (@Self, id_Columns, 7);

		Top.InitResource (@Self, id_Top, 7);

		Left.InitResource (@Self, id_Left, 7);

		Right.InitResource (@Self, id_Right, 7);

		Bottom.InitResource (@Self, id_Bottom, 7);

		Font.InitResource (@Self, id_Font);

		InchValidator.Init ('##;.##;"', True);

		Top.Validator := @InchValidator;

		Left.Validator := @InchValidator;

		Right.Validator := @InchValidator;

		Bottom.Validator := @InchValidator;

		XBuffer.Rows.Init (8);

		XBuffer.Columns.Init (8);

		XBuffer.Top.Init (8);

		XBuffer.Left.Init (8);

		XBuffer.Right.Init (8);

		XBuffer.Bottom.Init (8);

		TransferBuffer := @XBuffer;

		End;

	Destructor tLabelSetupDlg.Done;

		Begin

		Top.Validator := Nil;

		Left.Validator := Nil;

		Right.Validator := Nil;

		Bottom.Validator := Nil;

		Rows.Done;

		Columns.Done;

		Top.Done;

		Left.Done;

		Right.Done;

		Bottom.Done;

		Font.Done;

		InchValidator.Done;

		XBuffer.Rows.Done;

		XBuffer.Columns.Done;

		XBuffer.Top.Done;

		XBuffer.Left.Done;

		XBuffer.Right.Done;

		XBuffer.Bottom.Done;

		Inherited Done;

		End;

The SetFont method is also similar:

	Procedure tLabelSetupDlg.SetFont (var Msg: tMessage);

		Begin

		XBuffer.Font^.ChooseFont

			(@Self, @pDlgAppWindow (Parent)^.Printer);

		End;

This unit has two classes to register in its main code block:

	Begin

	RegisterType (rLabelPrintout);

	RegisterType (rMailingLabelPrintout);

	End.

You should be able to install the two new printout objects with your eyes shut. First, add the objects to the definition:

	Type

		pMainDlg = ^tMainDlg;

		tMainDlg = Object (tDlgAppWindow)

				Ú

				Ú

			ReturnLabelPrintout: pLabelPrintout;

			MailingLabelPrintout: pMailingLabelPrintout;

				Ú

				Ú

			Procedure cmFilePrintMailingLabels (var Msg: tMessage);

				Virtual cm_First + cm_FilePrintMailingLabels;

			Procedure cmFilePrintReturnLabels (var Msg: tMessage);

				Virtual cm_First + cm_FilePrintReturnLabels;

			Procedure cmFilePageSetupMailingLabels (var Msg: tMessage);

				Virtual cm_First + cm_FilePageSetupMailingLabels;

			Procedure cmFilePageSetupReturnLabels (var Msg: tMessage);

				Virtual cm_First + cm_FilePageSetupReturnLabels;

			End;

Initialize the pointers:

	Constructor tMainDlg.Init;

				Ú

				Ú

		Begin

				Ú

				Ú

		ReturnLabelPrintout := Nil;

		MailingLabelPrintout := Nil;

		End;

Create, Get, Put, and dispose of the objects in FileNew, FileOpen, FileSave and FileClose, respectively:

	Procedure tMainDlg.FileNew;

		Begin

				Ú

				Ú

		ReturnLabelPrintout := New (pLabelPrintout, Init);

		MailingLabelPrintout := New (pMailingLabelPrintout, Init);

		End;

	Procedure tMainDlg.FileOpen;

				Ú

				Ú

		Begin

		Inherited FileOpen;

		S.Init (Datafile.Pathname.CString, stOpenRead, 2048);

		ItemsData := pSortedOCollection (S.Get);

		ClosingData := pSortedOCollection (S.Get);

		ReturnAddress := pOString (S.Get);

		EnvelopePrintout := pEnvelopePrintout (S.Get);

		ReturnLabelPrintout := pLabelPrintout (S.Get);

		MailingLabelPrintout := pMailingLabelPrintout (S.Get);

		S.Done;

				Ú

				Ú

		End;

	Procedure tMainDlg.FileSave;

		Var

			S: tBufStream;

		Begin

		SelectItem (Items.GetSelIndex);

		Inherited FileSave;

		S.Init (Datafile.Pathname.CString, stCreate, 2048);

		S.Put (ItemsData);

		S.Put (ClosingData);

		S.Put (ReturnAddress);

		S.Put (EnvelopePrintout);

		S.Put (ReturnLabelPrintout);

		S.Put (MailingLabelPrintout);

		S.Done;

		End;

	Procedure tMainDlg.FileClose;

		Begin

				Ú

				Ú

		If Assigned (ReturnLabelPrintout) then

			Begin

			Dispose (ReturnLabelPrintout, Done);

			ReturnLabelPrintout := Nil;

			End;

		If Assigned (MailingLabelPrintout) then

			Begin

			Dispose (MailingLabelPrintout, Done);

			MailingLabelPrintout := Nil;

			End;

		Inherited FileClose;

		End;

The four command handlers--two to print, two for page setup--complete the job:

	Procedure tMainDlg.cmFilePrintMailingLabels (var Msg: tMessage);

		Begin

		MailingLabelPrintout^.SetTitle (@Self, ItemsData);

		Printer.Print (@Self, MailingLabelPrintout);

		End;

	Procedure tMainDlg.cmFilePrintReturnLabels (var Msg: tMessage);

		Begin

		ReturnLabelPrintout^.SetTitle (@Self, ReturnAddress);

		Printer.Print (@Self, ReturnLabelPrintout);

		End;

	Procedure tMainDlg.cmFilePageSetupMailingLabels (var Msg: tMessage);

		Begin

		If MailingLabelPrintout^.Setup (@Self) then

			Datafile.Dirty := true;

		End;

	Procedure tMainDlg.cmFilePageSetupReturnLabels (var Msg: tMessage);

		Begin

		If ReturnLabelPrintout^.Setup (@Self) then

			Datafile.Dirty := true;

		End;

At this point you can compile and run. Addressatron is complete!

As you run and use Addressatron, you may find yourself amazed at the small amount of effort it took to write it. And yet, it wasn't a small effort--the pieces came from almost every chapter in this book. But that's the magic of object-oriented programming. Components written for one project really can be used in another. Look at the envelope printing unit: it seems specific to Addressatron, but who knows when the printing of an envelope may be just the feature your next project, or one two months from now, needs? Its the sort of thing you might not add if you had to write it from scratch. But with the thing sitting there in a nice unit, it becomes no trouble at all.

Enahancements to Addressatron can also come easy. Why not add a freeform "Notes" field? Why not make it an OLE server?

ObjectWindows is an extremely open-ended product. Products are coming on the market now which claim to let you program "visually," but they're not object-oriented. They are powerful and you can do a lot with them, it's true; but as you start thinking of more and more features to add to your application you begin to find yourself slamming against a brick wall.

I hope, as you've worked through this book, that you've seen a truly object-oriented environment never gets in your way. It's always eager to lead you on, making your applications, as well as your programming abilities, ever more powerful.

		�

The�Turbo Pascal for Windows�Insider

A technical guide by Paul S. Cilwa�
�TIME \@ "MMMM d, yyyy"�March 12, 1993�

Page �PAGE�23��
�

�PAGE \# "'Page: '#'�'"��We need to display this in such a way that it looks more like an illustration than book text. Use a different font, or something. Maybe even make it a figure?

