I’ve been programming for Microsoft Windows since Version 2.03, and if I had a dollar for every dialog box-based application I’ve written, I’d be a wealthy man. Dialog box-based applications have always received short shrift in the technical literature. We’re given endless examples of graphics display and drawing programs, but most books contain few examples of the kind of applications you’ll probably write more than any other.

In this chapter, I’ll show you how to use OWL’s tDlgWindow to create a useful dialog class called tDlgAppWindow. I’ll be expanding this class throughout the book to help you develop useful dialog box-based applications.

Expanding OWL’s tDlgWindow Class�tc "Expanding OWL’s tDlgWindow Class"�

Ideally, a dialog-based Windows application should have the following attributes:

•	It is “file-oriented”—that is, its focal point is a file, which it can create, open, and save—or not save.

•	The file is best represented by a form containing standard controls, such as list boxes, radio buttons, and check boxes.

•	It has a standard menu: besides File, it can Edit, Search, and provide online Help.

•	It has an About box.

Nearly all Windows applications are file-oriented. When the program starts, it provides access to a new (empty) file. The file may represent a document, spreadsheet, or program information. It may contain address cards, a list of billable hours, a welding tank inventory, and so on. No matter, the program is distinct from this file in that the one program can open various files of the same type and manipulate them, allowing the user to save them and return to them later, or not save them at all.

The ability to not save changes you’ve made to a file is as important as the ability to save them. The Windows application style requires that users feel “safe” and unthreatened by their programs. A lot of that security comes from knowing that if you screw up a file, you can simply close the application without saving, and the file will revert to the previously saved version.

To encapsulate this generic program, we will need three basic components:

1.	A resource file, containing the main dialog template, About box template, standard menu, application icon, and accelerator keys.

2.	A program file, DlgSkel, which we can use as a skeleton program from which to build new, real programs.

3.	A unit file, tDlgAppWindow, in which resides our abstract dialog-based application object class.

The components of the tDlgAppWindow class—the clipboard, printer, and file system, for example—are best represented by classes of their own. We’ll implement those in later chapters. What we’re going to create in this chapter is a bare-bones, minimal tDlgAppWindow class that we can expand upon later. The tDlgAppWindow class, itself, will be descended from OWL’s tDlgWindow. By building up from tDlgWindow, we can learn a lot about OWL, Windows, Windows development, and object-oriented programming on the way.

Understanding Project Orientation�tc "Understanding Project Orientation"�

Any Windows project is composed of several components. Besides at least one source file, there will be a resource file and, of course, the final executable file. There may be DLLs and there should be an online help file. If the project contains source code in a compiled language other than Borland Pascal for Windows, there will be object files generated by the compiler. If there are BPW units, there will be TPW files. And so on.

As a developer, you’ll probably be working on more than one project at a time. I have partitioned my hard disks so that one logical drive, with the volume name PROJECTS, is devoted to all ongoing projects. If you don’t want to partition your hard disk, you should at least create a directory named \PROJECTS (or something similar) that contains other subdirectories, one for each ongoing task. In my case, each task is in a directory off of PROJECTS’ root directory. If a project consists of several major components, I create additional subdirectories.

A Plea for Organization

Organization is a process, not an achievement. You cannot suddenly “become” organized. It is an ongoing activity, best maintained by good habits.

To create our tDlgAppWindow class we’ll need a source file for the DlgApp unit, one for the DlgSkel test program, a DlgSkel resource file, and so on. An organized start to any project begins with these steps:

•	Decide on a project name of up to eight characters. In this case, we’ll use CHAP03.

•	Create a directory by that name.

•	Create a Program Manager group by the same name. (If you are using a Windows shell that permits nested group boxes, like Norton Desktop for Windows, I recommend a Projects group with a subgroup for each ongoing project.)

•	Copy a skeleton resource file (We haven’t created one yet; we’ll do that shortly) and rename it so the root name is the same as your project’s primary component. Drag the filename to the Program Manager group you just created to create an icon that, when double-clicked, will start the Resource Workshop and load the resource file.

•	Start Resource Workshop. Make any necessary alterations to the main dialog box, the menu, and the icon.

•	Copy a skeleton primary program file (we’ll be creating that skeleton later in this chapter) and rename the file, then drag it to the Program Manager group.

•	Double-click on the new icon to start BPW and load the file. Change the dummy internal program name to the new name.

At this point, you have created a basic project. The Program Manager icons are for convenience; often you’ll be able to get in some work without cranking up File Manager at all.

Should you need to create new, non-class units, start by copying UNITSKEL.PAS that we wrote in Chapter 2. When you need a new class, begin with CLASSKEL.PAS. As your experience increases, you’ll find yourself spending less time organizing and starting new projects, and more on the fun stuff: coding.

Using the Resource Workshop�tc "Using the Resource Workshop"�

If you are a beginning Windows programmer, program resources can seem overwhelming. There are dialog boxes, menus, icons, bitmaps, strings, and more! But with the graphical Resource Workshop, managing resources can be easy and even fun.

We’ll begin with the resource file. For the purpose of this book, I’ll assume you’re using Borland’s Resource Workshop, which comes with Borland Pascal with Objects Version 7.0. However, you don’t have to; if you prefer, you can use another resource editor.

For the beginning Windows programmer, dealing with resources may seem overwhelming. After all, we didn’t need them in the “good old days” of DOS, did we?

Well, maybe we did. How many DOS programs have you seen that come with numerous “associated” files that must be present for the program to run? Many of those files contain screens, bitmaps, or other components that the program’s designers did not want cluttering up the program’s data segment until actually needed. While certainly messy, in the context of a DOS application it’s really the only way.

The designers of Windows, knowing they were creating an environment that would require virtually every program to include bulky, graphical components, and having the luxury of building a new executable file format to boot, simply arranged a way to include all those associated components within the executable, itself. That’s all resources are: program components all located in one place, for ease of installation, de-installation, and maintenance.

(The primary exception is the associated Help file. To accommodate WinHelp’s being a standard, file-oriented Windows application, most .EXEs come with a .HLP file. I’d have rather Microsoft built the Help facility into Windows more along the lines of the message box; then the Help data could be stored as a resource, and made part of the .EXE, too. But, unfortunately, they didn’t check with me first.)

Traditionally, resources have been created as a text file with a .RC extension. This required a textual representation of everything from menus (easy) to bitmaps (hard). The Resource Workshop supports .RC files, but it’s a lot more convenient to deal with the resources directly, by letting the Resource Workshop create a precompiled resource file with a .RES extension. This can be used directly by BPW when compiling a program. A big drawback is that Resource Workshop will only use named constants to identify resource components if you are creating a .RC file. So far I’ve managed to use numeric constants safely by being careful; to avoid having to deal with the extra step of compiling a .RC file, that’s what we’re going to do here.

Resource Workshop refers to the collection of whatever it’s working on as a project. This project can be a single set of icons in an .ICO file, or an uncompiled .RC file containing many different resources. For the reasons outlined earlier, we’re going to create a .RES file—one containing precompiled resources of many types.

Start Resource Workshop, then select New Project from the File menu and create a .RES project file type. Resource Workshop will create a project file called UNTITLED.RES. Select Save Project from the File menu, rename the file, and place it in the CHAP03 subdirectory. Since it will contain the resources for the DlgSkel program, we’ll name it DLGSKEL.RES.

Use the File Manager to drag the new DLGSKEL.RES file to the CHAP03 Program Manager group you created. From now on, when you want to work on the resources for this project, you won’t have to mess with File Manager at all; just click on the Resource Workshop icon in the program group and the Resource Workshop will run with the DlgSkel resource file already loaded.

Designing the MAIN Icon�tc "Designing the MAIN Icon"�

Any Windows application needs at least one icon. The icon should be clever but not obscure, prominent but not gaudy, and distill the entire concept of your program to 1,024 pixels.

The Resource..New command is used to create a new resource within the project. Choose Icon from the list of possible resource types to create an icon. You’ll be offered a choice of possible icon types, as shown in Figure 3.1.

� INCLUDEPICTURE F:\\INSIDER\\FINAL\\FIG03-01.TIF * MERGEFORMAT ���

Figure 3.1 The New icon image dialog box allows you to specify the size and color depth of the icon you are about to create.

Currently, the 32-by-32-pixel icon is the most frequently used by Hercules, EGA, and VGA video displays. For each display, Windows picks the icon best suited for the display from among those you’ve created, so you should create at least two, one for a monochrome display and one for a 16-color display. 256-color displays are becoming more prevalent, though, and you do want to create a program that will continue to look good for years. If the image you’ve chosen for your icon would look even better with the subtle range of colors 256-color mode offers, then be sure and supply one of those, too. (You can only create a 256-color icon, though, if you are running Windows with a 256-color driver.)

For our DlgSkel program, the icon is just a place holder so that we can eventually test DlgSkel’s About box; therefore, we don’t need to be so fussy. My DlgSkel icon, shown in Figure 3.2, is simple.

�

Figure 3.2 The DlgSkel icon.

When you create a new resource, the Resource Workshop does not let you choose a name; it generates one for you. However, you can easily change the name of a resource with the Rename command, accessed from the Resource menu. Since this is our main icon, which will represent the application when it is in iconized form, we will name it “Main.”

Of course, the other applications we derive from this generic resource file will use different icons, but we’ll always name the main icon “Main.” By being consistent, we won’t have to remember to change the icon name in the various places it occurs.

Creating the MAIN Menu�tc "Creating the MAIN Menu"�

The generic application we are working toward has a standard menu. Not all applications derived from this generic app will need all the standard menu items; but it’s a lot easier to delete an unneeded item than to have to insert the same one application after application.

The Resource Workshop menu editor includes commands for generating standard File, Edit, and Help menus. For our purposes, however, the standard Windows style includes more potential commands than that, and our generic app will sport them all.

The Edit as Text command, accessed from the Resource menu, presents a “flat” translation of the generic menu:

MAIN MENU PRELOAD MOVEABLE DISCARDABLE

BEGIN

	POPUP "&File"

	BEGIN

		MENUITEM "&New", 101

		MENUITEM "&Open...", 102

		MENUITEM "&Save", 103

		MENUITEM "Save &as...", 104

		MENUITEM SEPARATOR

		MENUITEM "&Print...", 105

		MENUITEM "Page se&tup...", 106

		MENUITEM "P&rinter setup...", 107

		MENUITEM SEPARATOR

		MENUITEM "E&xit", 24340

	END

	POPUP "&Edit"

	BEGIN

		MENUITEM "&Undo\tAlt+BkSp", 205

		MENUITEM SEPARATOR

		MENUITEM "Cu&t\tShift+Del", 201

		MENUITEM "&Copy\tCtrl+Ins", 202

		MENUITEM "&Paste\tShift+Ins", 203

		MENUITEM "&Delete\tDel", 204

		MENUITEM SEPARATOR

		MENUITEM "&Select All", 206

		MENUITEM SEPARATOR

		MENUITEM "&Find...", 301

		MENUITEM "&Next\tF3", 302

		MENUITEM "&Previous\tF4", 303

		MENUITEM "&Replace...", 304

	END

	POPUP "&Search"

	BEGIN

		MENUITEM "&Find...", 301

		MENUITEM "&Next\tF3", 302

		MENUITEM "&Previous\tF4", 303

		MENUITEM "&Replace...", 305

	END

	POPUP "&Window"

	BEGIN

		MENUITEM "&New Window", 801

		MENUITEM "&Cascade", 802

		MENUITEM "&Tile", 803

		MENUITEM "&Arrange Icons", 804

		MENUITEM "C&lose All", 805

	END

	POPUP "&Help"

	BEGIN

		MENUITEM "&Index\tF1", 901

		MENUITEM "&Keyboard", 902

		MENUITEM "&Commands", 903

		MENUITEM "&Procedures", 904

		MENUITEM "&Using help", 905

		MENUITEM SEPARATOR

		MENUITEM "&About...", 999

	END

END

Notice that (with one exception) I’ve kept the ID numbers assigned by the Resource Workshop Menu..New File pop-up, Menu..New Edit pop-up, and Menu..New Help pop-up commands. This avoids confusion; you may find that starting with a blank menu and using the Resource Workshop commands may be a faster path to a particular application than starting with a stock menu and deleting inappropriate items. But most of the time, I think you’ll find the stock menu will be easier. (The one exception is for the File..Exit command; I’ll explain the significance of the odd ID number, 24340, in the next chapter.)

Also note that some menu items have accelerator key identifiers included as part of the menu item, separated from the item name by a tab character (“\t”). We’ll learn more about accelerators in the next section.

Most of the menu items also include an ampersand (“&”), usually, but not always, in front of the first letter. This indicates a speed key, not to be confused with an accelerator key. An accelerator key is converted into a command directly; a speed key is translated into a menu selection which then becomes a command. It’s not at all clear why Microsoft provided two keyboard interfaces to the menu, but the letter preceded by the & will be displayed with an underscore, and the & will be suppressed. (Incidentally, this works with buttons and other controls, as well.) If you hold down the Alt-Shift key while pressing the speed key of a top-level menu item, the menu will drop down as if you had clicked on it with the mouse. Then, if you press the speed key corresponding to one of the dropped-down items, that item will be selected.

Touch typists often prefer this interface to the mouse, so make sure that most or all commands have speed keys assigned to them. In a given drop-down, each speed key should be unique, which is sometimes a challenge. With both “Cut” and “Copy” in the Edit menu, only one should use “C” as a speed key. “Cut” wound up with the less desirable “t” being underscored. (If two entries use the same speed key, the entry can be accessed by pressing the speed key twice.)

By the way, it is not in accordance with Windows style to make your menu items all uppercase. Windows applications are intended to look polite and genteel. A Windows app with an all-uppercase menu looks like it’s on amphetamines. Is that really the effect you want?

We’ll name our main menu Main, for the same reason we gave that name to the icon: it’s generic enough for a skeleton application, yet specific enough that it won’t need to be changed when a non-generic application inherits it.

Using Accelerators to Enhance Your Applications�tc "Using Accelerators to Enhance Your Applications"�

Accelerators are key combinations that equate to certain commands. The bulk of this list will have to be created specifically for each application derived from DlgSkel. However, there are a few combinations recommended by the Windows Style Guide that are used so often it’s to your benefit to include them here.

Unlike speed keys, an accelerator need not have a corrsponding entry on the menu (although it usually does). Both accelerators and menu items cause command messages to be sent to your application. (A speed key simply triggers the menu item, which then produces the command message.)

Although the easiest way to deal with accelerators is with the interactive accelerator editor supplied with Resource Workshop, that method doesn’t translate well to the printed page. I’ll have to present our default accelerators in their “edit as text” format:

MAIN ACCELERATORS PRELOAD MOVEABLE

BEGIN

	VK_BACK, 205, VIRTKEY, ALT

	VK_DELETE, 201, VIRTKEY, SHIFT

	VK_INSERT, 202, VIRTKEY, CONTROL

	VK_INSERT, 203, VIRTKEY, SHIFT

	VK_DELETE, 204, VIRTKEY

	VK_F3, 302, VIRTKEY

	VK_F4, 303, VIRTKEY

	VK_F1, 901, VIRTKEY

	VK_F1, 998, VIRTKEY, CONTROL

	VK_F1, 997, VIRTKEY, SHIFT

END

The numbers—205, 201, and so on—equate to the menu IDs we assigned in the previous section. The Windows message dispatcher will convert the key strokes into a message indistinguishable from a selection of the associated menu item. OWL processes that message identically, and uses it to invoke the virtual method you designed to deal with that menu choice.

Building the MAIN Dialog�tc "Building the MAIN Dialog"�

We’re now going to create a dialog box capable of being a main window. Windows documentation calls this an “overlapped” window (because it can overlap, or be overlapped by, the main windows of other applications).

In the Resource Workshop, with your DlgSkel project loaded, choose the Resource..New command and select DIALOG from the list box. Resource Workshop loads the Dialog Editor and creates a default dialog box for you, with the caption DIALOG_1. The dialog won’t contain any controls, but that’s okay; that would make our skeleton too specific.

First, use the Resource..Rename command to change the name of the resource to MAIN. Next, double-click on the default dialog box to bring up its attribute screen. This is where you specify such dialog box properties as font, menu, and whether the dialog is to be an overlapped window, a pop-up, or a child window. (Pop-up is the default, but that’s not what we want for the main dialog.) Be sure to choose the attributes selected in Figure 3.3.

� INCLUDEPICTURE F:\\INSIDER\\FINAL\\FIG03-03.TIF * MERGEFORMAT ���

Figure 3.3. The Window Style dialog.

The Font section is not critical, but the other attributes are. Let’s look at each of them:

Caption Set this to “DlgSkel.” Later, when you clone this resource file for new projects, this will be the only field you have to change. It should contain the base caption for your application—the caption as it will appear when the application first comes up, without a filename appended to it. tDlgAppWindow reads this and uses it to generate the compound captions that Windows apps display after a file has been opened. For example, if the DLGSKEL app were to open a file called MYFILE.SKL, the caption would be changed to read “DlgSkel - MYFILE.SKL.”

By pulling the base caption from the dialog caption, we provide for future translation of the application into some foreign language, without having to worry that any strings may be hiding, hard-coded, in the program code. The main dialog box would be the focus of any translation efforts anyway, because translation involves more than simply converting English text to, say, French or Japanese. For instance, some languages require labels to appear to the right of edit boxes. German labels tend to use many more letters than English ones, so the dialog box must be wider than is required for English.

Class and Menu Class and Menu must each contain MAIN. This tells the Windows dialog loader that the menu we named MAIN should be loaded and attached to this dialog when it appears. Incidentally, even if you enter MAIN (without quotes) as your menu name, it will have quotes around it next time you open the file. I usually enter the name without quotes.

Window Type This is the place where we specify that the MAIN dialog window is to have the Overlapped style. If, when you first put your derivative application together, you create a dialog from scratch and it simply doesn’t appear when you test the program, make sure the Overlapped style is selected. Odds are it isn’t. If it is, make sure the dialog is named MAIN, and that the MAIN icon and menu actually exist.

Frame Style We’ve selected Caption to be consistent with other Windows applications. There is a specific purpose for each of the four styles, and we’ll talk about each as we come to them. A top-level window always has a caption and the standard border that this style implies.

Dialog Style Select System Menu and Minimize Box. Do not select Maximize Box. It may be appropriate for a “blank page” application to be sizable, but a form has a constant size. A dialog box never has a “sizable” border, so the user won’t be able to resize the box that way. By omitting the Maximize Box style, we eliminate the chance that the dialog will become inappropriately sized in that way.

The Clip Children style is often poorly understood. Generally, it’s not needed. If we intended to paint the dialog background—for example, if we were going to paint it blue or display a company logo—then without the Clip Children style, each time the dialog background was painted the child controls would become invalid and would, themselves, need to be repainted. With it, the background will be painted under a mask of excluded areas that coincide with the child windows.

However, creating that mask takes a little time. And, even if you’re not deliberately painting the background, it gets painted anyway with the default brush whenever it becomes invalid. Since the default brush is the one usually used for the child controls, as well, nothing is gained by excluding the areas they occupy. And so, for the standard Windows dialog window with a standard background, we do not select the Clip Children style.

Font This is a matter of taste. Microsoft uses the smaller, 8-point font for dialog boxes. However, in a sense this isn’t a regular dialog box because it’s also a main window. If you leave these fields blank, you’ll get the standard system font, the same one used in menus. I let my final decision rest with how “important” the application is, and how long it’s likely to remain on-screen. For a quick little utility that will come and go, I use the smaller font. For a commercial or custom application that a user will have to read for longer periods, the system font seems kinder.

OK When you hit the OK button, you’ll close the attributes dialog and return to your blank dialog.

Don’t place any controls on the blank dialog. You won’t be able to guess what controls will be appropriate for the specific applications you derive from this generic skeleton. Especially, don’t put on an OK or Cancel button. They are not appropriate for main windows. “OK” means “do it, then go back to the main window.” But we’re already at the main window. “Cancel” means “don’t do it, just go back to the main window.”

The reason for creating this dialog box in the first place is to have a starting point, with the appropriate class and menu names and dialog styles, for the real-life applications you’ll be creating. Later, when you create a new project, you’ll just copy this file into the new project directory and start Resource Workshop. When you start editing the MAIN dialog, you’ll be able to add all the controls you want.

Organizing Text Strings�tc "Organizing Text Strings"�

One reason for keeping program resources in a resource file (later bound to the target program) is to ease translation of the program into foreign languages. Dialog box templates and menus are obvious candidates. Even icons can be culture-specific and may need to be changed (in Japan, green means stop and red means go). The last program components eligible for translation are strings from which messages are produced. The Stringtable resource is designed to provide easy organization of message strings.

In Chapter 2, we added methods to the tOString class to load strings from the program resource segments. In this section, we’ll show how those strings get there.

In the Resource Workshop, with your DLGSKEL project loaded, choose the Resource..New command, then select STRINGTABLE from the list box. Resource Workshop will load the Stringtable Editor for you. Resource Workshop says it supports the creation of multiple string tables, but there is actually only one. Each string is identified by a unique number from one to 65535; Resource Workshop allows you to group your strings starting at different numbers. For example, the first time you create a stringtable, it defaults to stringtable 1. If you add four strings (for instance, “Lucy,” “Ricky,” “Fred,” and “Ethel”) they will be numbered 1, 2, 3, and 4. If you then create another stringtable, it will automatically be named “5” and the first string will be numbered 5. Resource Workshop also prevents you from inadvertently using the same number twice.

Stringtable Segments Are Organized 16 Strings per Segment

Strings in the stringtable are stored by number in segments of 16. Strings 1, 2, 3, and 4 are stored in one segment, but strings 1 and 17 are stored in two segments, even if they are the only strings. Therefore, it makes sense to group related strings together so that when the first is loaded, the others in the group will be accessed more quickly.

For now, we’re going to place just six strings in the stringtable. All of them have to do with tDlgAppWindow file management. You don’t have to understand them now; just enter the following six strings (presented here in the Edit as Text format for printed presentation):

STRINGTABLE

BEGIN

	500, "DlgSkel Files|*.skl|All Files(*.*)|*.*|"

	501, "skl"

	502, "Do you want to save the changes you've made to "

	503, "(Untitled)"

	504, "You cannot drag more than one file to this application at a time."

	505, "You cannot drag a subdirectory to this application."

END

Creating the tDlgAppWindow Class�tc "Creating the tDlgAppWindow Class"�

Our next step is to create an object class that will be a suitable backbone for an application’s main window. We’ve been talking about dialog box-based applications and there is an OWL class that comes close: tDlgWindow. However, this is a abstract class. By itself it can do very little, no more than load a dialog box and make it suitable as a main window. To add behaviors such as responses to menu commands, we’ll have to derive a new class from tDlgWindow. We’ll call that class tDlgAppWindow.

First we must create the framework for the new class. The framework won’t actually add any abilities to those of its ancestor. That will come later, starting with the next chapter. In this chapter, we’ll just add the GetClassName and GetWindowClass methods, and a simplified constructor so that we can create DlgSkel, our test program, and view the dialog box we created with Resource Workshop.

Use File Manager to copy UNITSKEL.PAS to the CHAP03 directory. You should then rename the unit DLGAPP.PAS. When you double-click on the name, BPW should start and load the new file. Change the name of the unit from UnitSkel to DlgApp and you’re ready to start.

Again, as before, we’ll simply create a default Init constructor and Done destructor. (We’ll need Done later, when we’ve added some meat to the class; we may as well include the framework now.) We also need the GetClassName and GetWindowClass methods. Finally, as promised, we’ll read the dialog box caption into a property, BaseCaption:

Unit DlgApp;

	(***)

						Interface

	(***)

	Uses

		WinTypes,

		WinProcs,

		Objects,

		OWindows,

		ODialogs,

		WinDos;

	Type

		pDlgAppWindow = ^tDlgAppWindow;

		tDlgAppWindow = Object (tDlgWindow)

			BaseCaption: tOString;

			Constructor Init;

			Destructor Done; Virtual;

			Function GetClassName: pChar;

			Procedure GetWindowClass

				(

				Var aWndClass: tWndClass

); Virtual;

			Procedure SetupWindow; Virtual;

			End;

	(***)

					Implementation

	(***)

	Constructor tDlgAppWindow.Init;

		Begin

		Inherited Init (Nil, 'MAIN');

		BaseCaption.Init (0);

		End;

	Destructor tDlgAppWindow.Done;

		Begin

		BaseCaption.Done;

		Inherited Done;

		End;

	Function tDlgAppWindow.GetClassName: pChar;

		Begin

		GetClassName := 'MAIN';

		End;

	Procedure tDlgAppWindow.GetWindowClass

			(

			Var aWndClass: tWndClass

);

		Begin

		Inherited GetWindowClass (aWndClass);

		aWndClass.hIcon := LoadIcon (hInstance, 'MAIN');

		End;

	Procedure tDlgAppWindow.SetupWindow;

		Begin

		Inherited SetupWindow;

		BaseCaption.SetTextW (Self);

		End;

	End.

Writing Init and Done Methods�tc "Writing Init and Done Methods"�

Override the inherited constructor with one having fewer parameters, if the constructor parameters will always be the same for the derived class.

Our constructor has no parameters, but the constructor for tDlgWindow does. That’s because tDlgWindow is less specific than tDlgAppWindow, which is typical for an ancestor class. The first parameter, which we pass as Nil, is a pointer to a parent window. tDlgAppWindow will never have a parent, so Nil will always be appropriate. The second parameter is supposed to be the name of the dialog box template. We’ve taken care of that by agreeing to always name our main window dialogs MAIN, so we supply that value here and never have to worry about it again. Thus, we’ve simplified our calling sequence (compared to our ancestor’s).

GetClassName and GetWindowClass �tc "GetClassName and GetWindowClass "�

GetClassName and GetWindowClass are required for a dialog box used as a main window.

The string pointer returned by GetClassName must match the value placed in the Class field on the attribute dialog we filled out when defining the default dialog box.

The GetWindowClass method gives us a chance to modify the default values of the tWndClass structure. We invoke the ancestor method first to get those default values, but then we can change some of them. For now we simply want to attach our main icon to the main window. As a resource, it has to be loaded, which returns a handle by which it can be referenced. All we have to do is assign that handle to the hIcon field of the tWndClass structure.

SetupWindow�tc "SetupWindow"�

Load the BaseCaption property after the main window has been physically created.

As mentioned earlier, the physical window is not created until just before the SetupWindow method has been invoked. Therefore we cannot actually load a value into the BaseCaption property until then; and that’s exactly what we do after invoking the ancestor SetupWindow method.

Building the Dialog Skeleton Application�tc "Building the Dialog Skeleton Application"�

Now we’re ready to create our skeletal main program. The WinCRT is certainly a clever unit, but if we intend to use OWL, we’ll have to bid it adieu. WinCRT has its own, internal message loop to allow it to deal with the Windows environment, but the ObjectWindows library has one, too, and we can’t have two active message loops in the same application.

But it’s really not a problem, because, now that we’ve got our tDlgAppWindow class to draw on, a generic, do-nothing OWL application is almost as easy to create as a WinCRT program—and can be much more powerful.

Create the DLGSKEL Module�tc "Create the DLGSKEL Module"�

The skeleton program module for an application based on tApplication does little but supply the method missing from the abstract class, making it usable.

Eventually, program files copied from DLGSKEL.PAS will contain much of the code required to derive a specific application from the generic one represented by tDlgAppWindow and tApplication. The skeleton provides both a test bed for tDlgAppWindow and a skeleton.

The program module in an ObjectWindows application usually contains an object derived from tWindowsObject that represents the application window, and an object derived from tApplication. As an abstract class, no one expects tApplication to be able to stand alone or create a usable application. Yet its default methods will create a window which you can move about, size, and close.

By overriding tApplication.InitMainWindow, we tie the two together by supplying a different object class as the main window. First you must create a new module named DLGSKEL.PAS and give it the following contents:

Program DlgSkel;

	{$R DlgSkel.res}

	Uses

		Objects,

		OWindows,

		WinProcs,

		WinTypes,

		DlgApp;

	Type

		pDlgApp = ^tDlgAppWindow;

		tDlgApp = Object (tApplication)

			Procedure InitInstance; Virtual;

			Procedure InitMainWindow; Virtual;

			Function ProcessAppMsg (var Message: tMsg): Boolean; Virtual;

			End;

	Var

		MyDlgApp: tDlgApp;

	Procedure tDlgApp.InitInstance;

		Begin

		Inherited InitInstance;

		hAccTable := LoadAccelerators (hInstance, 'MAIN');

		End;

	Procedure tDlgApp.InitMainWindow;

		Begin

		MainWindow := New (pDlgAppWindow, Init);

		End;

	Function tDlgApp.ProcessAppMsg (var Message: tMsg): Boolean;

		Begin

		ProcessAppMsg :=

			ProcessAccels (Message) or

			ProcessDlgMsg (Message);

		End;

	Begin

	MyDlgApp.Init ('My Dlg App');

	MyDlgApp.Run;

	MyDlgApp.Done;

	End.

As you can see, the dialog application skeleton really is quite simple. It took more work to create the resource file! Although we’ll add a little bit more to it soon, it’s never going to get very complex. That’s because the bulk of the work of being a generic application is locked up in tApplication and tDlgAppWindow.

The most important aspect of DLGSKEL.PAS is that it defines a derivative class: that of tDlgApp. tDlgApp is derived from tApplication and it is essential because tApplication is an abstract class; like tDlgWindow, it can’t do anything useful on its own. At the very least, you must override its InitMainWindow method to create an instance of the class of window on which your application is based. That’s what we’ve done here. Using the New function, we create an instance of a tDlgAppWindow (the p prefix indicates a pointer reference to the base type) and assign the resulting pointer to tApplication’s MainWindow property.

The other two methods allow us to use the accelerator keys we place in the resource file. InitInstance should be used for any processing that must be done for each running copy of the program. (There is also an InitApplication method for any processing that must be done for the first running copy only.) In this case, we obtain a handle to the accelerator table:

Procedure tDlgApp.InitInstance;

	Begin

	Inherited InitInstance;

	hAccTable := LoadAccelerators (hInstance, 'MAIN');

	End;

The last method overcomes a bug in ObjectWindows regarding the use of accelerator keys in dialog-based applications.

All messages for an application are dispatched by tApplication.MessageLoop to tApplication.ProcessAppMessage. This method, in turn, passes the messages on to ProcessDlgMessage, ProcessMDIAccels, and ProcessAccels. Each of these methods is a function which returns True if it actually does anything with the message it’s been given:

Function TApplication.ProcessAppMsg (var Message: tMsg): Boolean;

	Begin

	ProcessAppMsg :=

		ProcessDlgMsg (Message) or

		ProcessMDIAccels (Message) or

		ProcessAccels (Message);

	End;

Thanks to short-circuit evaluation, if any of the methods returns True, none of the following methods will be invoked at all.

The problem comes about from the order in which the messages are checked. Since our main window is a dialog, all messages for it are going to be processed by ProcessDlgMsg and ProcessAccels will never see them.

The simple solution is to override ProcessAppMsg in tDlgApp:

Function tDlgApp.ProcessAppMsg (var Message: tMsg): Boolean;

	Begin

	ProcessAppMsg :=

		ProcessAccels (Message) or

		ProcessDlgMsg (Message);

	End;

In the replacement method, we check for accelerator keys first. Notice I have also taken out the reference to ProcessMDIAccels. Since our dialog-based application can never be an MDI application, there’s no need to check for pre-defined MDI accelerators.

The file DLGSKEL.PAS contains a Program rather than a Unit. This means that when it’s compiled and run, the code lying between the final Begin and End keywords will be executed first. Let’s look at those three lines: that’s the entire Windows application, OOP style.

An object of the class tDlgApp was placed in the data segment:

Var

	MyDlgApp: tDlgApp;

As discussed earlier, this created an instance of tDlgAppWindow but did not, in itself, initialize it. That happens in the first line of the program:

MyDlgApp.Init ('My Dlg App');

The string ‘My Dlg App’ could be anything. It will simply be assigned to the Name property of tApplication. We won’t use it further, so language translation isn’t an issue. The Init method of tApplication (which we inherited since we did not override the method in tDlgApp) initializes its own properties and invokes a few of its own methods to do so, including InitMainWindow. Since our overriding InitMainWindow method creates and initializes our tDlgAppWindow, all that will happen as well.

At the execution of the next line,

MyDlgApp.Run;

the application actually appears. You’ve been told—repeatedly—that Windows is a “message-driven” environment. The Run method of the tApplication class encapsulates the message loop required by every Windows application (or at least, every Windows application that actually has a window). The message loop, and therefore the Run method, does not complete until the application has finished.

When it does finish, the last statement,

MyDlgApp.Done;

disposes of any items the tApplication.Init constructor has created, and the application terminates.

Testing the Application�tc "Testing the Application"�

If you’ve done your typing (or copying!) correctly, when DLGSKEL.PAS is the active document, you should be able to click on the Run..Run command, get a clean compile, and watch the application window appear on your screen.

Even though our expectations for DLGSKEL are modest, it’s important to test what we’ve done so far. We’ll be testing two things at once, of course: the compiler will test the syntactic correctness of the code, and running the application will test its logical correctness.

By testing frequently after minor changes to the code, you can develop a sense of confidence that what you’ve written is robust. And BPW’s Windows-hosted IDE makes it easy. Seconds after choosing the Run..Run command, you should see a window very much like the one in Figure 3.4.

� INCLUDEPICTURE F:\\INSIDER\\FINAL\\FIG03-04.TIF * MERGEFORMAT ���

Figure 3.4 A generic application makes its first appearance.

You’ve now written your first OWL-based Windows application.

In a Main Window Dialog, the Menu Speed Keys Don’t Work If There Are No Controls

This is a Windows bug. Speed keys, which should not be confused with accelerator keys, are the Alt+character combinations that are part of the keyboard interface of any Windows application. In the test DlgApp, for example, Alt-F is supposed to make the File menu drop down. If the dialog had any controls on it, this would work perfectly, as you’ll see when we start working with controls in Chapter 8.

In Chapter 4, we’ll create yet another class, one that encapsulates the behavior we’d like to see in menu handling. When an object of that class is made a property of tDlgAppWindow, you’ll see some exciting features added to our dialog.

