The first, real application you’ll write is called INI Editor, or IniEdit, which will provide a friendlier means of editing .INI files than simply loading one into Notepad. It will enumerate sections and keys within a section, and let you read, change, and even delete key values, keys, and sections. Encryption and parsing of multi-value keys will also be supported. By writing IniEdit, you’ll also learn how to support the Windows file-oriented paradigm by saving transactions and applying them all to the file at once, in response to a File..Save command. Sound exciting? You bet! So let’s get started.


Giving the INI Editor Its Appearance�tc "Giving the INI Editor Its Appearance"�


A dialog-based Windows application must have a well-thought-out main window. After all, that’s the part users will see every time they run the app. Controls should be ordered as fields on a paper form would be, left to right and top to bottom (for users whose cultures read that way). If you start from the DLGSKEL.RES file, be sure to modify each resource appropriately for the new project. It would be pretty embarrassing if the user chose the Help..About command and got DlgSkel’s About box!


Setting Up the IniEdit Resources�tc "Setting Up the IniEdit Resources"�


First, we need to create a resource file for INI Editor. We start by copying DLGSKEL.RES, then naming the copy INIEDIT.RES. But that’s only the beginning.


Like any tDlgAppWindow application, INI Editor will need the following resources:





•	Main dialog window





•	Main menu





•	Accelerator keys





•	Icon





•	Stringtable





•	Version info





By starting with a copy of DLGSKEL.PAS, which has a sample (or skeleton) of each of these resources, you’ll save a lot of time. But each must be modified for INI Editor. Figure 7.1 shows my modifications, though your version does not need to be identical to mine.





� INCLUDEPICTURE F:\\INSIDER\\FINAL\\FIG07-01.TIF \* MERGEFORMAT ���


Figure 7.1 The INI Editor Main Dialog and Control IDs.


As you can see, I’ve identified each of the control IDs. (Control IDs are similar to menu IDs; they correspond to the offset of the dynamic method that will service the corresponding control.) The three command buttons are initially disabled; we can enable them programmatically when the user has selected something that could then be deleted or changed.


While we’re in the dialog editor, we’ll also need an About box. The skeleton About is fine; it just needs the labels changed appropriately, as shown in Figure 7.2.





� INCLUDEPICTURE F:\\INSIDER\\FINAL\\FIG07-02.TIF \* MERGEFORMAT ���


Figure 7.2 The INI Editor About Box.


Next is the menu. Preparing it is mostly a job of deleting items from the skeleton menu, rather than adding new ones. Here it is, in “Edit as Text” format:





MAIN MENU PRELOAD MOVEABLE DISCARDABLE 


BEGIN


	POPUP "&File"


	BEGIN


		MENUITEM "&New", 101


		MENUITEM "&Open...", 102


		MENUITEM "&Save", 103


		MENUITEM "Save &as...", 104


		MENUITEM SEPARATOR


		MENUITEM "E&xit", 24340


	END





	POPUP "&Edit"


	BEGIN


		MENUITEM "&Undo\tAlt+BkSp", 205


	END





	POPUP "&Help"


	BEGIN


		MENUITEM "&Index\tF1", 901


		MENUITEM SEPARATOR


		MENUITEM "&About IniEdit...", 999


	END





END





Stringtable 500 needs the first two entries changed. String 500 is the filter string that will be passed to the File Open and Save common dialogs. As you’ll recall from Chapter 5, the format of the filter string is pairs of entries. The second of the pair, the “All files” entry, can remain; but the first should be changed to “Initialization Files|*.ini|” and string 501 (the default extension) should be changed to “ini”. The accelerator table should be changed to:





MAIN ACCELERATORS PRELOAD MOVEABLE


BEGIN


	VK BACK, 205, VIRTKEY, ALT


	VK F3, 302, VIRTKEY


	VK F4, 303, VIRTKEY


	VK F1, 901, VIRTKEY


	VK F1, 998, VIRTKEY, CONTROL


	VK F1, 997, VIRTKEY, SHIFT


END





We’ve removed the editing accelerators to allow the built-in edit copy, cut, and paste abilities of the edit controls to function.


You need to slightly modify the VersionInfo resource, as shown here:





1 VERSIONINFO 


FILEVERSION 1, 0, 0, 0


PRODUCTVERSION 1, 0, 0, 0


FILEFLAGSMASK VS_FF_DEBUG | VS_FF_PRERELEASE |


	VS_FF_PATCHED | VS_FF_PRIVATEBUILD | VS_FF_INFOINFERRED |


	VS_FF_SPECIALBUILD


FILEOS VOS__WINDOWS16


FILETYPE VFT_APP


BEGIN


	BLOCK "StringFileInfo"


	BEGIN


		BLOCK "04090000"


		BEGIN


			VALUE "CompanyName", "The Coriolis Group\000"


			VALUE "FileDescription", "INI File Editor\000"


			VALUE "FileVersion", "1.0\000"


			VALUE "InternalName", "INIEDIT\000"


			VALUE "LegalCopyright", "©1993 Paul S. Cilwa\000"


			VALUE "OriginalFilename", "INIEDIT.EXE\000"


			VALUE "ProductName", "INI Editor\000"


			VALUE "ProductVersion", "1.0\000"


		END


	END


END





Finally, Figure 7.3 shows the icon I designed for INI Editor.








Figure 7.3 INI Editor's Icon.


Save the changes you’ve made, then exit Resource Workshop to complete INIEDIT.RES. Now all you have to do is write the program to make it work!


Customizing Standard Controls�tc "Customizing Standard Controls"�


One of the promises of object-oriented programming is that you won’t have to write programs; you’ll simply assemble them. The reality is that, usually, you’ll find you don’t have every piece you need. As time goes by and your library of classes grows, the list of missing pieces will get smaller if you keep an eye out for potentially reusable components. By putting extra care into the creation of those components, you can guarantee that the next time you need that piece for a project, you’ll have it.


XControls: Variations on a Theme�tc "XControls\: Variations on a Theme"�


OWL comes complete with a set of object classes descended from tControl. Each is intended to represent one of the standard Windows controls: buttons, list boxes, and so on. Unfortunately, the designers of OWL didn’t make these classes quite as complete as they might have. Normally, wherever they left a gap, we would have to complete the class by invoking the Windows API. However, an alternative is to create an army of descendent classes that supply the missing methods.


The methods that are most spectacularly absent from OWL are Enable, Disable, SetText, and GetText. None of these are hard to implement; but it’s not aesthetically pleasing to drop to the API at any but the lowest levels.


tControl would have been that lower level. For a time, Borland offered the source code to Borland Pascal 7.0’s ObjectWindows Library free as an incentive to buy; it is also for sale. If you have a copy, you can modify tControl to include these “missing” methods; then tButton, tScrollbar, and so on will inherit them with no further effort.


However, if you don’t have the OWL source, you can make a unit of “extended” control classes that provide these methods. Using CLASSKEL.PAS as a base, create CONTROLS.PAS:





Unit Controls;





	(***********************************************)


						Interface


	(***********************************************)





	Uses


		WinProcs,


		Win31,


        Wintypes,


		Objects,


		OWindows,


		ODialogs,


		OString;





	Type


		pXStatic = ^tXStatic;


		tXStatic = Object (tStatic)


			str_ID: Word;


			Constructor Init


				(


				aParent: pWindowsObject;


				anID: Integer;


				aText: pChar;


				X,Y,W,H: Integer;


				aTextLen: Word


				);


			Constructor InitResource


				(


				aParent: pWindowsObject;


				anID: Integer;


				aTextLen: Word


				);


			Constructor Load (Var S: tStream);


			Procedure Store (Var S: tStream);


			Procedure SetText (Const aText: tOString);


			Procedure SetTextR (ID: Word);


			Procedure GetText (Var aText: tOString);


			End;





	Type


		pXButton = ^tXButton;


		tXButton = Object (tButton)


			str_ID: Word;


			Constructor Init


				(


				aParent: pWindowsObject;


				anId: Integer;


				aText: pChar;


				X,Y,W,H: Integer;


				IsDefault: Boolean


				);


			Constructor InitResource


				(


				aParent: pWindowsObject;


				anID: Integer


				);


			Constructor Load (Var S: tStream);


			Procedure Store (Var S: tStream);


			Procedure SetText (Const aText: tOString);


			Procedure SetTextR (ID: Word);


			Procedure GetText (Var aText: tOString);


			Procedure Depress;


			Procedure Raise;


			End;





	Type


		pXScrollbar = ^tXScrollbar;


		tXScrollbar = Object (tScrollbar)


			End;





	Type


		pXEdit = ^tXEdit;


		tXEdit = Object (tEdit)


			Procedure SetText (Const aText: tOString);


			Procedure SetTextR (ID: Word);


			Procedure GetText (Var aText: tOString);


			Function GetTextLength: Word;


			Procedure ClearText;


			End;





	Type


		pXListbox = ^tXListbox;


		tXListbox = Object (tListbox)


			Procedure GetSelText (Var aText: tOString);


			Function FindText


				(Var aText: tOString; StartIX: Integer): Integer;


			End;





	Type


		pXCombobox = ^tXCombobox;


		tXCombobox = Object (tCombobox)


			Procedure SetText (Const aText: tOString);


			Procedure GetText (Var aText: tOString);


			Procedure GetSelText (Var aText: tOString);


			Function FindText


				(Var aText: tOString; StartIX: Integer): Integer;


			Procedure GetSelection (Var StartPos, EndPos: Integer);


			Procedure SetSelection (StartPos, EndPos: Integer);


			Procedure ClearText;


			End;





	Type


		pXGroupbox = ^tXGroupbox;


		tXGroupbox = Object (tGroupbox)


			str_ID: Word;


			Constructor Init


				(


				aParent: pWindowsObject;


				anId: Integer;


				aText: pChar;


				X,Y,W,H: Integer


				);


			Constructor InitResource


				(


				aParent: pWindowsObject;


				anID: Integer


				);


			Constructor Load (Var S: tStream);


			Procedure Store (Var S: tStream);


			Procedure SetText (Const aText: tOString);


			Procedure SetTextR (ID: Word);


			Procedure GetText (Var aText: tOString);


			End;





	Type


		pXCheckbox = ^tXCheckbox;


		tXCheckbox = Object (tCheckbox)


			str_ID: Word;


			Constructor Init


				(


				aParent: pWindowsObject;


				anId: Integer;


				aText: pChar;


				X,Y,W,H: Integer;


				aGroup: pGroupBox


				);


			Constructor InitResource


				(


				aParent: pWindowsObject;


				anID: Integer


				);


			Constructor Load (Var S: tStream);


			Procedure Store (Var S: tStream);


			Procedure SetText (Const aText: tOString);


			Procedure SetTextR (ID: Word);


			Procedure GetText (Var aText: tOString);


			End;





	Type


		pXOption = ^tXOption;


		tXOption = Object (tRadioButton)


			str_ID: Word;


			Constructor Init


				(


				aParent: pWindowsObject;


				anId: Integer;


				aText: pChar;


				X,Y,W,H: Integer;


				aGroup: pGroupBox


				);


			Constructor InitResource


				(


				aParent: pWindowsObject;


				anID: Integer


				);


			Constructor Load (Var S: tStream);


			Procedure Store (Var S: tStream);


			Procedure SetText (Const aText: tOString);


			Procedure SetTextR (ID: Word);


			Procedure GetText (Var aText: tOString);


			End;





	(***********************************************)


					Implementation


	(***********************************************)





				 


				 





I know that’s a lot of code, but before you have a stroke, look at each class. This is very repetitive stuff. That tells you right away that most, if not all, the additions should really be made to tControl. But, without the OWL source code to modify, you have no choice.


And, even if you did have the OWL source code—many of us do, after all—is it really a good idea to muck with it? After all, Borland will keep enhancing ObjectWindows with each release of Borland Pascal. Do you want to keep track of all the improvements you make, so you can re-apply them each time you upgrade BP?


It turns out that a unit like Controls is not that bad a compromise, after all. And it does point up a neat facet of object-oriented programming: that this kind of manipulation is even possible.


To make the class names unique but easy to remember, I simply added an “X” to the base class’s name: tXButton, tXStatic, and so on. The “X” can stand for “extended,” if you like. One exception: Microsoft has stopped calling them radio buttons. In much of their new documentation, as well as the Word for Windows macro language and Visual Basic, they call the little round buttons that come in groups and represent mutually exclusive choices, option buttons. Never one to be last to board a bandwagon, I’ve named the extended radio button class tXOption.


Now let’s make our way through the code of the Controls unit. Since the code is so repetitive, we won’t examine every control class in detail. Rather, let’s look at the methods that make up a typical control in the unit, tXButton. First up: the Init and InitResource constructors.





Constructor tXButton.Init


		(


		aParent: pWindowsObject;


		anId: Integer;


		aText: pChar;


		X,Y,W,H: Integer;


		IsDefault: Boolean


		);


	Begin


	Inherited Init (aParent, anID, aText, X, Y, W, H, IsDefault);


	str_ID := 0;


	End;





Constructor tXButton.InitResource


		(


		aParent: pWindowsObject;


		anID: Integer


		);


	Begin


	Inherited InitResource (aParent, anID);


	str_ID := 0;


	End;





I’ve given a str_ID property to each of the controls that have label-type text associated with them. Labeled controls need these because most labels should come from the application’s resource pool, where they can be kept language-specific. You can use the str_ID property to quickly test which label was most recently assigned to the control. The Init constructor does not assign any text to the control, and InitResource allows it to keep the text it was assigned by Resource Workshop. A str_ID of zero (never a legal string resource ID) indicates that no stringtable element has yet been assigned. Therefore, after invoking its ancestor, each constructor initializes str_ID to zero.


Since str_ID is not an object, we do not need to supply an overriding destructor.


Load and Store are quite straightforward:





Constructor tXButton.Load (Var S: tStream);


	Begin


	Inherited Load (S);


	S.Read (str_ID, SizeOf (str_ID));


	End;





Procedure tXButton.Store (Var S: tStream);


	Begin


	Inherited Store (S);


	S.Write (str_ID, SizeOf (str_ID));


	End;





As with Init and InitResource, among the classes defined in the Controls unit, only those with str_ID properties need Load and Store methods.


You could make a point for supplying a full set of SetText methods to the labeled controls, like we did for the tOString class. But I maintain that labels should almost always come from the application resource pool, the only exception being the occasional programmatically constructed label. So I’ve given only SetText and SetTextR methods, omitting a SetTextC, SetTextP, and so on. You are free to add these if you disagree with my philosophy.





Procedure tXButton.SetText (Const aText: tOString);


	Begin


	SetWindowText (hWindow, aText.CString);


	str_ID := 0;


	End;





Procedure tXButton.SetTextR (ID: Word);


	Var


		aText: tOString;


	Begin


	If str_ID <> ID then


		Begin


		aText.InitTextR (ID);


		SetWindowText (hWindow, aText.CString);


		aText.Done;


		str_ID := ID;


		End;


	End;





As you can see, we’ve already put the str_ID property to good use, to avoid the annoying flicker that would occur if you send identical text to a control more than once. Another reason for the str_ID property is to provide an efficient means of determining the current label of the control. However, sometimes you just have to obtain the actual text. That’s the function of the GetText method:





Procedure tXButton.GetText (Var aText: tOString);


	Begin


	aText.SetTextW (@Self);


	End;





Each set of class methods is delimited with the class registration record:





Const


	rXStatic: tStreamRec =


		(


		ObjType: 7001;


		VmtLink: Ofs (TypeOf (tXStatic)^);


		Load: @tXStatic.Load;


		Store: @tXStatic.Store


		);





Following the pattern we established in Chapter 2, the ObjType of the tXStatic is 7001, since that is the first object class of Chapter 7 to be registered.


The tXEdit class adds a couple of methods unique to itself. The first returns the length of the text currently in the control:





Function tXEdit.Length: Word;


	Begin


	Length := GetWindowTextLength (Self.hWindow);


	End;





By naming it Length, we continue the parallel between the tOString class (where Length is a read-only property) and the controls.


The ClearText method is intended to parallel the ClearList methods of list boxes and combo boxes:





Procedure tXEdit.ClearText;


	Begin


	Inherited SetText ('');


	End;





Yes, it’s very simple—hardly worth coding. But using it will make your code much clearer. Why make a reader figure out that you are clearing an edit box when your code can say so?


There are two methods unique to tXButton. Normally, when you click a button, it depresses briefly and then returns to the raised state. However, sometimes it’s desirable to keep it depressed, for example when it’s used in a toolbar. This is accomplished via the Depress method. The Raise method returns the button to its normal position:





Procedure tXButton.Depress;


	Begin


	SendMessage (hWindow, bm SetState, Word (True), 0);


	End;





Procedure tXButton.Raise;


	Begin


	SendMessage (hWindow, bm SetState, Word (False), 0);


	End;





For the tXListbox, the GetSelText method provides the convience of tOString objects:





Procedure tXListbox.GetSelText (Var aText: tOString);


	Var


			i: Integer;


	Begin


	i := GetSelIndex;


	If i > -1 then


		Begin


		aText.SetMaxLength (GetStringLen (i));


		aText.Length :=


			GetSelString (aText.CString, aText.GetMaxLength + 1);


		End


	else


		aText.Length := 0;


	End;





This method retrieves the text of the currently selected item, if there is one. Otherwise, it returns an empty string.


Something else missing from OWL list boxes is being able to search the list for a specific string. The FindString method supplies that:





	Function tXListbox.FindText


		(Var aText: tOString; StartIX: Integer): Integer;


	Begin


	FindText := Integer (SendMessage (hWindow,


		LB_FINDSTRINGEXACT, Word (StartIX), LongInt (aText.CString)));


	End;





There is a FindText method for the tXCombobox class, as well. Don’t forget to use the proper message for the underlying control type. Messages with an LB_ prefix are intended to be used with list boxes; messages beginning with CB_ should be sent only to combo boxes.


Speaking of combo boxes, two of the combo box styles provide an embedded edit control that responds to messages paralleling those handled by a regular edit control. Of particular interest is the ability to manipulate the selected text within the edit portion of the combo box. The GetSelection and SetSelection methods mimic tEdit’s methods of the same name. (However, since tEdit.SetSelection does not return a meaningful value, I’ve made tXComboBox.SetSelection a procedure instead of a Boolean function.) Each works by sending the appropriate message to the control:





Procedure tXCombobox.GetSelection


		(Var StartPos, EndPos: Integer);


	Var


		Result: LongInt;


	Begin


	Result := SendMessage (hWindow, cb_GetEditSel, 0, 0);


	StartPos := LoWord (Result);


	EndPos := HiWord (Result);


	End;





Procedure tXCombobox.SetSelection (StartPos, EndPos: Integer);


	Begin


	SendMessage (hWindow, cb_SetEditSel, 0,


		MakeLong (StartPos, EndPos));


	End;





Don’t forget to register the new classes in the unit’s main block:





Begin


RegisterType (rXStatic);


RegisterType (rXButton);


RegisterType (rXScrollbar);


RegisterType (rXEdit);


RegisterType (rXListbox);


RegisterType (rXCombobox);


RegisterType (rXGroupbox);


RegisterType (rXCheckbox);


RegisterType (rXOption);


End.





With the classes supplied in this unit, coding the INI Editor, as well as later applications, will go more smoothly. Also, by using the XControls, we give ourselves the chance to add any generic methods we find we need along the way. Without them, we would find ourselves constantly second-guessing ourselves: “I thought I needed a regular list box...but now, five days into coding, I guess I’ll have to change to a derivative list box class, instead.”


The Complete Source Code for the XControls


Since so much of the code is repetitive, we decided not to print it all here. The complete code is shown in Appendix A. It is also available on the optional disk.





Creating a Smarter Combo Box�tc "Creating a Smarter Combo Box"�


A look at the INI Editor dialog template reveals two combo box/pushbutton pairs. The behavior of these two pairs of controls will be similar, as well. This suggests that behavior could be encapsulated as an object class.


The two INI Editor combo boxes are similar. In each, if the user selects an item from the list, we’ll want the associated command button to read “Delete”. If the user types an entry that does not match anything in the list, we’ll want the button to read “Add.” And if the typing produces an entry that is in the list, we’ll want the button to immediately change back to “Delete.” Finally, if the user clears the edit box of all characters, we must disable the command button, because then nothing will have been specified to either add or delete.


The smart combo box/pushbutton combination is not likely to be unique to this project. Many applications have a similar setup. So it will be to our advantage to place the smart combo box class in a unit of its own, with a stringtable-only resource file:





STRINGTABLE LOADONCALL MOVEABLE DISCARDABLE


BEGIN


	701, "Add"


	702, "Delete"


END





Then, copy CLASSKEL.PAS as SMARTCMB.PAS and start it off like this:





Unit SmartCmb;


{$R SmartCmb.RES}





	(***********************************************)


						Interface


	(***********************************************)





	Uses


		WinTypes,


		WinProcs,


		Objects,


		OWindows,


		OString,


		Controls;





	Const


		str_Add = 		701;


		str_Delete = 	702;





	Type


		pSmartCombo = ^tSmartCombo;


		pComboCommand = ^tComboCommand;





		tComboCommand = Object (tXButton)


			Combo: pSmartCombo;


			Constructor Load (Var S: tStream);


			Procedure Store (Var S: tStream);


			Procedure bnClicked (Var Msg: tMessage);


				Virtual nf_First + bn_Clicked;


			End;





		tSmartCombo = Object (tXCombobox)


			Command: pComboCommand;


			Constructor Init


				(


				aParent: pWindowsObject;


				anID: Integer;


				X,Y,W,H: Integer;


				aStyle, aTextLen: Word;


				BX,BY,BW,BH: Integer;


				aCommandID: Word


				);


			Constructor InitResource


				(


				aParent: pWindowsObject;


				anID: Integer;


				aTextLen: Word;


				aCommandID: Word


				);


			Destructor Done; Virtual;


			Constructor Load (Var S: tStream);


			Procedure Store (Var S: tStream);


			Procedure Enable;


			Procedure Disable;


			Procedure ClearList;


			Procedure SetSelIndex (IX: Integer);


			Procedure Selected (Var Msg: tMessage);


				Virtual nf_First + cbn_SelChange;


			Procedure Changed (Var Msg: tMessage);


				Virtual nf_First + cbn_EditChange;


			Procedure Add; Virtual;


			Procedure Delete; Virtual;


			End;





	(***********************************************)


					Implementation


	(***********************************************)





				 


				 





We’ve added the constants for the two values a combo box-related command button is most likely to have, and which we already placed in SMARTCMB.RES: “Add” and “Delete.”


If you look closely at the above section of the unit, you may notice a coding technique we haven’t used before:





Type


	pSmartCombo = ^tSmartCombo;


	pComboCommand = ^tComboCommand;





	tComboCommand = Object (tXButton)


		Combo: pSmartCombo;


		Constructor Load (Var S: tStream);


		Procedure Store (Var S: tStream);


		Procedure bnClicked (Var Msg: tMessage);


			Virtual nf_First + bn_Clicked;


		End;





	tSmartCombo = Object (tXCombobox)


		Command: pComboCommand;





Since Borland Pascal is a one-pass compiler, we aren’t allowed to surprise it by referencing any type before it is defined. But if we follow that rule, how can we have a circular reference like the one above? We need the tComboCommand object to contain a pointer to a tSmartCombo object, which needs to contain a pointer to a tComboCommand object. What’s a programmer to do?


Fortunately the folks at Borland were able to relax the rules enough to get us out of this mess. Within a single Type statement only, you are allowed to define a pointer type to another type that has not yet been defined. We’ve been doing that all along, of course, but this is the first time the pointer and object definitions were separated by more than a single line. Here, the definitions of pSmartCombo and tSmartCombo are separated by an entirely different class definition! This is okay, as long as the two sets of definitions are part of the same Type statement.


The tComboCommand class under consideration is intended to objectify the command button that is part of the combo box/pushbutton pair. Its primary purpose is to invoke its partner’s Add and Delete methods. To do so, it has to have some idea who its partner is. The Combo pointer provides that information.


And yet, there is no constructor for the property. How can it get its value? The answer is in the constructors for tSmartCombo:





Constructor tSmartCombo.Init


		(


		aParent: pWindowsObject;


		anID: Integer;


		X,Y,W,H: Integer;


		aStyle, aTextLen: Word;


		BX,BY,BW,BH: Integer;


		aCommandID: Word


		);


	Begin


	Command := New (pComboCommand,


		Init (aParent, aCommandID, '', BX, BY, BW, BH, False));


	Inherited Init (aParent, anID, X, Y, W, H, aStyle, aTextLen);


	Command^.Combo := @Self;


	End;





Constructor tSmartCombo.InitResource


		(


		aParent: pWindowsObject;


		anID: Integer;


		aTextLen: Word;


		aCommandID: Word


		);


	Begin


	Command := New (pComboCommand,


		InitResource (aParent, aCommandID));


	Inherited InitResource (aParent, anID, aTextLen);


	Command^.Combo := @Self;


	End;





As you can see, each constructor actually creates a tComboCommand object. The constructor invokes its own ancestor constructor, then assigns a pointer to itself to the command button’s Combo property.


It would have been cleaner to provide tComboCommand with a constructor that accepted, as a parameter, a pointer to its partner. Then, tSmartCombo wouldn’t have to know about tComboCommand’s internal data. But that would have taken up about fifteen lines of code with no real benefit. Data-hiding is very useful in its place, but these two object classes are intimately related. They will never be used apart, and there’s no reason why they should have any secrets from each other.


Since tSmartCombo creates a tComboCommand in its constructor, it must destroy it in its destructor:





Destructor tSmartCombo.Done;


	Begin


	Dispose (Command, Done);


	Inherited Done;


	End;





The Load and Store methods of both object classes provide an interesting little diversion. For tSmartCombo, there’s no value in writing the pointer to Command to the stream; if the stream is a file, and the object is loaded during another run of the program, the pointer will almost certainly not mean anything. We need another way to re-create the Command property. Worse, if we store an entire dialog box and then actually create a new Command object at Load time, we’ll have two—because the loading of a dialog box will automatically re-create all child windows.


Fortunately, ObjectWindows has a technique to cover this situation. PutSiblingPtr is intended for use in Store methods where the property being stored is normally a pointer to a sibling control on the same dialog or window:





Procedure tSmartCombo.Store (Var S: tStream);


	Begin


	Inherited Store (S);


	PutSiblingPtr (S, Command);


	End;





GetSiblingPtr is supplied for the corresponding Load:





Constructor tSmartCombo.Load (Var S: tStream);


	Begin


	Inherited Load (S);


	GetSiblingPtr (S, Command);


	End;





The Load and Store methods for tComboCommand are almost �identical:





Constructor tComboCommand.Load (Var S: tStream);


	Begin


	Inherited Load (S);


	GetSiblingPtr (S, Combo);


	End;





Procedure tComboCommand.Store (Var S: tStream);


	Begin


	Inherited Store (S);


	PutSiblingPtr (S, Combo);


	End;


Use PutChildPtr and GetChildPtr Methods to Store and Load Child Controls


A similar problem arises with dialog objects. Often, such objects contain pointers to control objects. PutChildPtr and GetChildPtr, used like PutSiblingPtr and GetSiblingPtr above, solve the same problem, allowing you to re-create the pointers to child windows without duplicating the windows themselves.


In our examples thus far, we have not had to write dialog objects intended for streaming; so our control objects have been directly accessed through pointers. But if you do intend to stream a dialog, you must access the child controls through pointers, so that PutChildPtr and GetChildPtr can do their magic.








The tComboCommand object exists only to automatically activate the Add and Delete methods of tSmartCombo when the button tComboCommand represents is clicked. Therefore, its only method (other than Load and Store) is a handler for the click event:





Procedure tComboCommand.bnClicked (Var Msg: tMessage);


	Begin


	Case str_ID of


		str_Add:	Combo^.Add;


		str_Delete:	Combo^.Delete;


		End;


	End;





tSmartCombo’s methods are much more interesting, although you couldn’t tell it from the first three. Enable, Disable, and ClearList only override the inherited methods from tXCombobox to propagate the effect to the Command button. ClearList disables Command because the user should not be able to add or delete an item from an empty combo box:





Procedure tSmartCombo.Enable;


	Begin


	Inherited Enable;


	Command^.Enable;


	End;





Procedure tSmartCombo.Disable;


	Begin


	Inherited Disable;


	Command^.Disable;


	End;





Procedure tSmartCombo.ClearList;


	Begin


	Inherited ClearList;


	Command^.Disable;


	End;





But the remaining methods have some meat on them. To start with, we need to do what the Selected event handler does whether the user selects an item from the list manually, or the application does it programmatically. Selected will be triggered automatically by a user selection, but we’ll have to execute similar code when a selection is made by the app. Selections are made by invoking SetSelIndex, so that’s the method we override:





Procedure tSmartCombo.SetSelIndex (IX: Integer);


	Begin


	Inherited SetSelIndex (IX);


	If IX = -1 then


		Command^.Disable


	else


		Begin


		Command^.SetTextR (str Delete);


		Command^.Enable;


		End;


	End;





This allows us to manage the Command button. If a selection has been made, the button should read “Delete” and be enabled. If, on the other hand, the selection has been removed so that no item is selected at all, the button must be disabled. The same behavior is required of user-mode selections:





Procedure tSmartCombo.Selected (Var Msg: tMessage);


	Begin


	If GetSelIndex = -1 then


		Command^.Disable


	else


		Begin


		Command^.SetTextR (str_Delete);


		Command^.Enable;


		End;


	End;





If there is currently no selection, GetSelIndex returns –1.


A combo box of the style represented by tSmartCombo includes an edit box above the dropdown or permanent list box. (The third combo box style, dropdown list, would never need a command button.) The user may choose to type into this box rather than use the mouse to select an existing item from the list. There are two possible reasons for this: the user simply prefers typing to using the mouse, hard as that may be to believe; or the user may wish to add a new item to the list. Either way, the Changed event handler will be invoked:





Procedure tSmartCombo.Changed (Var Msg: tMessage);


	Var


		Item: tOString;


		IX: Integer;


		StartPos, EndPos: Integer;


	Begin


	Item.Init (0);


	GetText (Item);


	If Item.Length > 0 then


		Begin


		IX := FindText (Item, -1);


		If IX <> -1 then


			Begin


			GetSelection (StartPos, EndPos);


			SetSelIndex (IX);


			SetSelection (StartPos, EndPos);


			End


		else


			Command^.SetTextR (str_Add);


		Command^.Enable;


		End


	else


		Command^.Disable;


	Item.Done;


	End;





This method contains a few more lines than most, but it really does just one of three things, depending on what happened just before it was called. First, if the user deleted all text from the edit box—that is, Item.Length > 0—the Command button must simply be disabled. Second, if there is text in the box but it does not match any entry in the list, the Command button should read “Add” and be enabled. Finally, if the text in the box does match an existing entry, the Command button should read “Delete” and be enabled. This last possibility is handled by selecting the matching entry; the combo box will automatically copy the selection into the edit box, where it will “replace” the identical entry just made by the user. It will also become selected in the edit box sense, where the letters are highlighted and the next letter typed will replace all of them. We don’t want that to happen—what if the user’s entry just matched “Richards” but he or she is typing “Richardson”? So we get the starting and ending position of the caret in the edit box with GetSelection, set the selection index, and restore the caret with SetSelection.


Incidentally, you won’t find the code to set the button label to “Delete” in this method. When we set the selection index, the Selected method is called automatically; it sets the button to “Delete.” Why do it twice?


The last two methods are quite straightforward. Add simply adds to the list whatever the user had placed in the edit box, then selects that item:





Procedure tSmartCombo.Add;


	Var


		Item: tOString;


	Begin


	Item.Init (0);


	GetText (Item);


	SetSelIndex (AddString (Item.CString));


	Item.Done;


	End;





Again, SetSelIndex will invoke Selected, which will change the Command button back to “Delete.” If the user then clicks on it, the Delete method will be invoked:





Procedure tSmartCombo.Delete;


	Var


		Msg: tMessage;


	Begin


	DeleteString (GetSelIndex);


	ClearText;


	Changed (Msg);


	End;





This method removes the current selection from the list, clears the text from the edit box, then invokes the Changed method that already knows how to deal with an empty edit box.


Test the tSmartCombo Object


\CHAP07\CBTEST.PAS contains a simple test bed for the tSmartCombo class. It requires INIEDIT.RES and pre-loads a single item into the Sections list.





Creating the Program File�tc "Creating the Program File"�


Once the reusable components have been created, it’s time to assemble the application using existing and new reusable classes, cemented together with non-reusable custom code. In the case of INI Editor, that means building the actual program file and creating the tSections, tKeys, and tValues classes to do the work and manage the other components.


Writing the INI Editor Program File�tc "Writing the INI Editor Program File"�


The IniEdit program file provides support for the program resources defined by the Resource Workshop, and a framework within which the various control classes can function as instantiated objects.


Copy DLGSKEL.PAS as INIEDIT.PAS, load the file into the BPW IDE, then alter the first few lines to look like this:





Program IniEdit;





	{$R IniEdit.res}





	Uses


		Objects,


		OWindows,


		WinProcs,


		WinTypes,


		DlgApp,


		OString,


		IniData,


		Controls,


		SmartCmb,


		WinDos,


		Menus,


		Sections;





To ensure the application registers itself properly you should also change the Init invocation in the main program.





Begin


MyDlgApp.Init ('IniEditor');


MyDlgApp.Run;


MyDlgApp.Done;


End.





At this point, you can compile and run INI Editor. The File commands should work, as well as Help..About. But File..Open won’t have any real effect, in spite of the very convincing appearance of the File Open common dialog box. The controls on the form won’t actually do anything, either, except drop down, depress, or allow text to be typed into them. 


But we need to flesh out that skeleton. To start, the dialog that is the main window contains a number of controls. In Resource Workshop, we gave each of the controls a unique ID number. We need to tie those ID numbers to objects the program can manipulate. To do so, the first step is to create a set of constants so we don’t have to try to remember that the Sections combo box is 1001, the SectionsCommand button is 1002, and so on. I usually put constants near the beginning of the program, prior to the Type definition of the main dialog class:





Const


	id_Sections = 		1001;


	id_SectionCommand = 1002;


	id_Keys = 			1003;


	id_KeyCommand = 	1004;


	id_Value = 			1005;


	id_Encryption = 	1006;


	id_Delimiter = 		1007;


	id_ValueCommand = 	1008;


	id_Values = 		1009;


Don’t Assign Controls and Menu Commands the Same IDs


Although control notifications and menu commands arrive via different mechanisms in OWL, both originate as WM_COMMAND messages from Windows. OWL does its best to separate them, dispatching them to id_First- and cm_First-offset dynamic methods, respectively. But this mechanism fails if you have given the same ID to a menu command and a control. To prevent doing this accidentally, I always give menu commands three-digit IDs, and controls four-digit IDs. You may wish to adopt a similar scheme.








If you look at the dialog design, you can see that IniEdit’s controls are arranged hierarchically. Until a section has been selected (or added), the Keys and Value controls have no meaning. Until a key has been selected, the Value controls still have no meaning.


It’s always best to reflect reality in your objects, so we’ll provide IniEdit with a Sections property that contains a Keys property, which contains a Value property. Obviously we’ll have to write the class definitions for these properties! So make three copies of CLASSKEL.PAS and name them SECTIONS.PAS, KEYS.PAS, and VALUES.PAS, respectively. We’ve already referenced the Sections unit in the Uses clause.


Use the Goldilocks Rule for Sizing Units: Not Too Big, Not Too Small 


Strike a balance between monstrous, all-inclusive program files and neurotic division of every piece, no matter how trivial, into a separate unit. If you tend toward the first extreme, your file will take forever to load into the IDE, you’ll have to wait for the whole thing to compile even after a trivial change, and you’ll have to hunt through it each time you need to work on a specific piece of code. At the other extreme, you’ll find yourself spending more time managing component files than you do coding. Here’s a hint: if you find you have more than five class definitions or, say, 1200 lines of code in a single unit, you should probably consider breaking it up, unless there’s a compelling reason to keep the code together. On the other hand, if, instead of meaningful names, you find it necessary to give units code names that you must look up in a master file list, you have too many units.


If your project is too big to take the middle path, remember Windows is The Great Integrator. Your one program doesn’t have to do so much; break it into pieces and let the user select the piece he or she wants by selecting icons from a Program Manager group.


Even if your project is a full-featured word processor or drawing package, you should break it along functional lines and treat each component as a separate project, each with its own subdirectory of source code and resources. Each component should contain exactly one unit whose task is to unite the subordinate units. Your application project will then be easy to manage and, better still, easy to understand and maintain.








Units can refer to each other, but not in a circular manner. That is, the Sections unit can use the Keys unit, and the Keys unit can use the Values unit, but the Values unit could not then use the Sections unit. With this in mind, we’ll have to define tValue, tKeys, tSections, and tMainDlg, in that order. Unfortunately, it’s much easier to understand hierarchical relationships if you start at the hierarchical top—which, in this case, is tMainDlg. For that reason, we’ll examine the four classes that make up IniEdit’s main dialog in reverse order.


But if we’re to use incremental development techniques, we’ll still need to compile. If we create an absolutely minimal unit for Sections, we’ll be able to do just that.


Edit SECTIONS.PAS so it looks like this:





Unit Sections;





	(***********************************************)


						Interface


	(***********************************************)





	Uses


		WinTypes,


		WinProcs,


		Objects,


		OWindows,


		OString,


		Controls,


		SmartCmb,


		IniData;





	Type


		tSections = Object (tSmartCombo)


			Constructor InitResource


				(


				aParent: pWindowsObject;


				anIni: pIniDataX;


				aDirty: pBoolean;


				id_Sections,


				id_SectionCommand,


				id_Keys,


				id_KeyCommand,


				id_Value,


				id_Encryption,


				id_Delimiter,


				id_ValueCommand,


				id_Values: Word


				);


			End;





	(***********************************************)


					Implementation


	(***********************************************)





	Constructor tSections.InitResource


			(


			aParent: pWindowsObject;


			anIni: pIniDataX;


			aDirty: pBoolean;


			id_Sections,


			id_SectionCommand,


			id_Keys,


			id_KeyCommand,


			id_Value,


			id_Encryption,


			id_Delimiter,


			id_ValueCommand,


			id_Values: Word


			);


		Begin


		Inherited InitResource


			(aParent, id_Sections, 64, id_SectionCommand);


		End;





	End.





That’s all we need here. We don’t need a Done method because we’ve inherited one from tSmartCombo, and we don’t need Load and Store because we aren’t going to stream this object class. We did include the rather lengthy calling sequence that InitResource will need later, so that when tMainDlg invokes it, the code won’t have to be changed after we expand tSections. But otherwise, we have a Sections unit that INIEDIT.PAS can use, and we’ll be able to get on with our incremental development—except for one thing. Note that the aDirty parameter to InitResource is a pBoolean type. This is intended to be a pointer to a Boolean data type, though Borland neglected to give us this definition.


We’ll have to define it ourselves. But where should we put it? If we put the Type definition in INIEDIT.PAS, the Sections unit won’t be able to reference it. We can’t put it in both places because the compiler will think they are two different data types, even though they’re defined identically. If we put it in the Sections unit, the tKeys class that tSections is going to need won’t have access to it. If we put it in the Keys unit, the Values unit won’t be able to access it.


This is the kind of real-life problem that books usually don’t have to wrestle with, because they don’t usually set out to write real-life programs. The fact is, there’s no elegant way to solve this problem. If you have a copy of the ObjectWindows source code, you can always add pBoolean to, say, WinTypes. But then you’ll have to remember to add it every time you upgrade to a new version of Borland Pascal. And what if a future version doesn’t include source code? The most politically correct answer is to place pBoolean in a unit devoted to similar omissions, even though it may be the only thing in there.


But the real-life thing to do is compromise. We already have a unit devoted to Borland omissions, sort of: the Controls unit. The original idea was to add functionality to the control classes, but we’ll probably use the unit in every project from now on. So we’ll add pBoolean to the Controls unit, and we won’t feel guilty.


Edit CONTROLS.PAS and add the following anywhere in the Interface section:





Type


	pBoolean = ^Boolean;





And there we have it: another real-life problem solved.


Switching to INIEDIT.PAS, tMainDlg starts out simply, because so much will be encapsulated in its Sections property:





Type


	pMainDlg = ^tMainDlg;


	tMainDlg = Object (tDlgAppWindow)


		Ini: tIniDataX;


		Sections: tSections;


		EditUndoMenu: tMenuItem;


		Constructor Init;


		Destructor Done; Virtual;


		Procedure SetupWindow; Virtual;


		End;





			 


			 





Constructor tMainDlg.Init;


	Begin


	Inherited Init;


	Ini.Init;


	Sections.InitResource (@Self);


	End;





Destructor tMainDlg.Done;


	Begin


	Ini.Done;


	Sections.Done;


	EditUndoMenu.Done;


	Inherited Done;


	End;





Procedure tMainDlg.SetupWindow;


	Var


		EditMenu: tHandle;


	Begin


	Inherited SetupWindow;


	EditMenu := GetSubMenu (GetMenu (Self.hWindow), 1);


	EditUndoMenu.InitResource (EditMenu, 0);


	End;





You handle the EditUndoMenu property similarly to the FileSaveMenu property of the ancestor tDlgAppWindow class. This similarity extends to the handling of the wmInitMenuPopup event:





Procedure tMainDlg.wmInitMenuPopup (Var Msg: tMessage);


	Begin


	Inherited wmInitMenuPopup (Msg);


	If Msg.wParam = EditUndoMenu.ParentMenu then


		If Ini.CanUndoTransaction then


			EditUndoMenu.Enable


		else


			EditUndoMenu.Disable;


	End;





except, of course, that whether the Edit..Undo menu command is enabled is based on whether there are transactions stored that can be undone.


When implementing the FileNew method, we know we’ll have to clear the Sections list, as well as the Ini property:





Procedure tMainDlg.FileNew;


	Begin


	Inherited FileNew;


	Ini.Clear;


	Sections.ClearList;


	End;





Sections.ClearList, of course, is inherited from tSmartCombo.


By the same token, the FileOpen method will need to pass the name of the file it will use to the Ini property:





Procedure tMainDlg.FileOpen;


	Begin


	Inherited FileOpen;


	Ini.SetPathname (DataFile.Pathname);


	Sections.LoadList;


	End;





With Ini thus primed, we’ll be able to transfer its collection of section names to the Sections property. But we won’t do that directly; we’ll invoke a yet-to-be-defined LoadList method. We can worry about the details when we flesh out the tSections class.


The FileSave method is as simple as FileNew:





Procedure tMainDlg.FileSave;


	Begin


	Inherited FileSave;


	Ini.SetPathname (DataFile.Pathname);


	Ini.ApplyTransactions;


	End;





But cmFileSaveAs is more complex:





Procedure tMainDlg.cmFileSaveAs (Var Msg: tMessage);


	Procedure CopyFile (Var Old, New: tOString);


		Var


			OldFCB, NewFCB: Text;


			Buffer: Array [1..2048] of Char;


			Line: String;


		Begin


		Assign (OldFCB, Old.PString);


		Assign (NewFCB, New.PString);


		Reset (OldFCB);


		Rewrite (NewFCB);


		While not eof (OldFCB) do


			Begin


			ReadLn (OldFCB, Line);


			WriteLn (NewFCB, Line);


			End;


		Close (OldFCB);


		Close (NewFCB);


		End;


	Var


		OldFileName: tOString;


	Begin


	OldFileName.InitText (DataFile.Pathname);


	If DataFile.ShouldSaveAs (@Self) then


		Begin


		If not OldFileName.Matches (DataFile.Pathname) then


			If OldFileName.Length > 0 then


				CopyFile (OldFileName, DataFile.Pathname);


		FileSave;


		End;


	OldFileName.Done;


	End;





The problem is that we are storing just-changed transactions in memory, not the entire file. If the user wants to save the “file” under another name, we first have to re-create the original file, then apply the transactions to the copy. Thus, as long as the original file had a name, cmFileSaveAs actually performs a basic file copy operation before invoking FileSave. (When would the original file not have a name? When it was an untitled new file, of course—existing only as transactions in memory.)


Adding the Sections Property�tc "Adding the Sections Property"�


The Sections property is at the top of the hierarchy that includes all on-screen controls. Before we can examine the rest of the tMainDlg methods, we’ll have to flesh it out by adding properties and methods of its own.


As mentioned earlier, the Sections property represents the Sections combo box in the main dialog window, but it also incorporates, as a property, the Keys combo box (which in turn incorporates the Value group). So before we can work on tSections, we’ll have to create a minimal Keys unit, just as we did earlier with Sections.


Load KEYS.PAS into the IDE, then change it so it looks like this:





Unit Keys;





	(***********************************************)


						Interface


	(***********************************************)





	Uses


		WinTypes,


		WinProcs,


		Objects,


		OWindows,


		OString,


		Controls,


		SmartCmb,


		IniData;





	Type


		tKeys = Object (tSmartCombo)


			Constructor InitResource


				(


				aParent: pWindowsObject;


				anIni: pIniDataX;


				aDirty: pBoolean;


				id_Keys,


				id_KeyCommand,


				id_Value,


				id_Encryption,


				id_Delimiter,


				id_ValueCommand,


				id_Values: Word


				);


			End;





	(***********************************************)


					Implementation


	(***********************************************)





	Constructor tKeys.InitResource


			(


			aParent: pWindowsObject;


			anIni: pIniDataX;


			aDirty: pBoolean;


			id_Keys,


			id_KeyCommand,


			id_Value,


			id_Encryption,


			id_Delimiter,


			id_ValueCommand,


			id_Values: Word


			);


		Begin


		Inherited InitResource (aParent, id_Keys, 64, id_KeyCommand);


		End;


	End.





Turning to SECTIONS.PAS, you can add Keys to the list of units:





Uses


	WinTypes,


	WinProcs,


	Objects,


	OWindows,


	OString,


	Controls,


	SmartCmb,


	IniData,


	Values,


	Keys;





The full definition of tSections is not too long, especially when you realize that half of the lines comprise the constructor’s parameter list:





Type


	tSections = Object (tSmartCombo)


		Keys: tKeys;


		Ini: pIniDataX;


		Dirty: pBoolean;


		Constructor InitResource


			(


			aParent: pWindowsObject;


			anIni: pIniDataX;


			aDirty: pBoolean;


			id_Sections,


			id_SectionCommand,


			id_Keys,


			id_KeyCommand,


			id_Value,


			id_Encryption,


			id_Delimiter,


			id_ValueCommand,


			id_Values: Word


			);


		Destructor Done; Virtual;


		Procedure ClearList;


		Procedure LoadList;


		Procedure SetSelIndex(IX: Integer);


		Procedure Selected (Var Msg: tMessage);


			Virtual nf_First + cbn_SelChange;


		Procedure Changed (Var Msg: tMessage);


			Virtual nf_First + cbn_EditChange;


		Procedure Delete; Virtual;


		End;





The reason for the long parameter list is that we have to pass all the control IDs to the Sections property. As it turns out, much of tSection’s total functionality is encapsulated in its Keys property, so tSections itself isn’t very complicated.


The pointer to a tIniDataX property will simply point to MainDlg’s Ini property. This will allow the Sections object to directly query Ini without having to go through MainDlg to do it. Remember, though, tSections does not own the Ini property, so it must not destroy it. Likewise, we save the aDirty pointer to the Dirty flag. 





Constructor tSections.InitResource


		(


		aParent: pWindowsObject;


		anIni: pIniDataX;


		aDirty: pBoolean;


		id_Sections,


		id_SectionCommand,


		id_Keys,


		id_KeyCommand,


		id_Value,


		id_Encryption,


		id_Delimiter,


		id_ValueCommand,


		id_Values: Word


		);


	Begin


	Inherited InitResource


		(aParent, id_Sections, 64, id_SectionCommand);


	Keys.InitResource


		(


		aParent,


		anIni,


		aDirty,


		id_Keys,


		id_KeyCommand,


		id_Value,


		id_Encryption,


		id_Delimiter,


		id_ValueCommand,


		id_Values


		);


	Ini := anIni;


	Dirty := aDirty;


	End;





Destructor tSections.Done;


	Begin


	Keys.Done;


	Inherited Done;


	End;





The first thing you should notice here is that, instead of naming the constructor Init, we have named it InitResource. tSmartCombo has constructors by both names; but since we’re defining this object class strictly for this application, not for reuse, we’ll only bother to write the one constructor we need.


When to Use Init and InitResource


By convention, a control’s Init constructor actually creates the control. You use Init when you want to create a control that was not there before. You use InitResource when the control is part of a dialog box template, as assembled in Resource Workshop. This constructor won’t create the physical control, knowing it already exists; it just initializes the OWL object that represents the control and creates the link to the physical control via the ID you specify.





Understanding the Difference between Controls and Child Windows


The difference between controls and child windows is subtle. Both terms are often used interchangeably in the Windows documentation. A third variant, child control, is also used.


My take on it is that a control is a child window that responds to user input by sending notification messages to its parent window. By this definition, all the standard child windows—list box, edit box, scroll bar, and so on—qualify as controls, except for the static class, which doesn’t generate any messages at all; so it isn’t a control...just a child window.


But don’t get too upset if you see someone refer to a “static control.” The term “jumbo shrimp” is also used.








tSections inherits a ClearList method from its ancestor, but in this context it makes sense for tSections to clear its properties as part of the processing for this method, as well:





Procedure tSections.ClearList;


	Begin


	Inherited ClearList;


	Keys.ClearList;


	Keys.Disable;


	End;





We also disable the Keys property, because if no section name is present, the user should not be allowed to add a key. If the user cannot click or type on the Keys combo box, we won’t have to implement an error routine to deal with that situation.


We knew that tSections would have a LoadList method. When we invoked it from tMainDlg we didn’t care how it might be implemented, but now we do:





Procedure tSections.LoadList;


	Var


		s: Word;


		Section: pOString;


	Begin


	ClearList;


	Ini^.RefreshSections;


	For s := 1 to Ini^.Sections.Count do


		Begin


		Section := Ini^.Sections.At(s-1);


		AddString (Section^.CString);


		End;


	SetSelIndex (0);


	End;





The tSmartCombo class already manages the relationship between the combo box and the command button when a selection is made. There are, however, a couple more things that need to be done in INI Editor when the tSections object is selected. Since the tSmartCombo class distinguishes between the user and programmatic selection, we’ll have to override the SetSelIndex method:





Procedure tSelections.SetSelIndex (IX: Integer);


	Var


		Msg: tMessage;


	Begin


	Inherited SetSelIndex (IX);


	Selected (Msg);


	End;





Then we only have to put the actual behavior in one place, the Selected method:





Procedure tSections.Selected (Var Msg: tMessage);


	Var


		Section: tOString;


	Begin


	Inherited Selected (Msg);


	If GetSelIndex = -1 then


		Begin


		Keys.ClearList;


		Keys.Disable;


		End


	else


		Begin


		Section.Init (0);


		GetSelText (Section);


		Ini^.SetSection (Section);


		Section.Done;


		Keys.Enable;


		Keys.LoadList;


		End;


	End;





GetSelIndex returns –1 if no item has been selected. In that case, we’ll want to disable the entire Keys hierarchy. If we have gotten to this state from one in which a section name was selected, we’ll also have to invoke Keys.ClearList.


On the other hand, if a section has been selected, we’ll want to retrieve the actual selected section name from the list and use it to prime the Ini property. Then, we’ll want to load the Keys property and enable its associated controls. The LoadList method is not inherited from tSmartCombo; we’ll have to write it specifically for the tKeys class. Designing from the top down like this makes determining what pieces are needed for a project fairly easy.


We also need to augment the inherited Changed method:





Procedure tSections.Changed (Var Msg: tMessage);


	Begin


	Inherited Changed (Msg);


	If GetSelIndex = -1 then


		Begin


		Keys.ClearList;


		Keys.Disable;


		End;


	End;





The inherited method will select an item from the list if a match was found with whatever the user typed into the edit box. So all we have to do now is check to see if there is a current selection. If there isn’t, we just clear and disable the Keys property. If there is, the Selected method will already have done what needed doing.


The Add method that tSections inherited from tSmartCombo is adequate, but we’ll have to enhance the Delete method. In the ancestor method, all tSmartCombo had to do was remove an entry from the list; but tSections will have to remove it from the .INI file, as well:





Procedure tSections.Delete;


	Var


		Name: tOString;


	Begin


	Name.InitTextW (@Self);


	Ini^.SetSection (Name);


	Ini^.DeleteSection;


	Dirty^ := True;


	Name.Done;


	Inherited Delete;


	End;





You might wonder why we set the DataFile.Dirty flag to True if the user deletes a section, but not if he or she adds one. This is because adding a section name to the list does not necessarily result in a new section actually being added to the file. A section is added automatically when a key and value for a previously non-existent section are written, but there is no way to add a section by itself using WritePrivateProfileString. Adding a section simply enables the Keys property, giving the user the chance to continue and add a key and value, but not requiring it.


Implementing the tKeys Property�tc "Implementing the tKeys Property"�


The tKeys property encapsulates the Keys “smart” combo box, as well as the nested Values property that only has meaning after a key has been specified.


The similarity of Keys to Sections that we saw in the tIniData class continues with the tKeys object class. Note that similarity is still not pervading enough to make one class out of the two, but it does make coding or understanding tKeys a lot easier if you have already figured out tSections.


To start with, we’ll have to create a rudimentary tValue class in the Values unit. Load VALUES.PAS and make it look like this:





Unit Values;





	(***********************************************)


						Interface


	(***********************************************)





	Uses


		WinTypes,


		WinProcs,


		Objects,


		OWindows,


		OString,


		Controls,


		SmartCmb,


		IniData;





	Type


		pValue = ^tValue;


		tValue = Object (tXEdit)


			Constructor InitResource


				(


				aParent: pWindowsObject;


				anIni: pIniDataX;


				aDirty: pBoolean;


				id_Value,


				id_Encryption,


				id_Delimiter,


				id_ValueCommand,


				id_Values: Word


				);


			End;





	(***********************************************)


					Implementation


	(***********************************************)





	Constructor tValue.InitResource


			(


			aParent: pWindowsObject;


			anIni: pIniDataX;


			aDirty: pBoolean;


			id_Value,


			id_Encryption,


			id_Delimiter,


			id_ValueCommand,


			id_Values: Word


			);


		Begin


		Inherited InitResource (aParent, id_Value, 128);


		End;


	End.





Then, add a reference to the Uses clause of the Keys unit:





Uses


	WinTypes,


	WinProcs,


	Objects,


	OWindows,


	OString,


	Controls,


	SmartCmb,


	IniData,


	Values;





We can now add to the abbreviated tKeys definition we created before:





Type


	tKeys = Object (tSmartCombo)


		Value: tValue;


		Ini: pIniDataX;


		Dirty: pBoolean;


		Constructor InitResource


			(


			aParent: pWindowsObject;


			anIni: pIniDataX;


			aDirty: pBoolean;


			id_Keys,


			id_KeyCommand,


			id_Value,


			id_Encryption,


			id_Delimiter,


			id_ValueCommand,


			id_Values: Word


			);


		Destructor Done; Virtual;


		Procedure ClearList;


		Procedure Disable;


		Procedure Enable;


		Procedure LoadList;


		Procedure SetSelIndex (IX: Integer);


		Procedure Selected (Var Msg: tMessage);


			Virtual nf_First + cbn_SelChange;


		Procedure Changed (Var Msg: tMessage);


			Virtual nf_First + cbn_EditChange;


		Procedure Delete; Virtual;


		End;





Again, we’ve postponed much of the complexity by tossing it into a Values property. Like tSections, there is a command button associated with the Keys combo box, so we make it descend from tSmartCombo. The constructor and destructor methods are as expected, as is the ClearList method:





Constructor tKeys.InitResource


		(


		aParent: pWindowsObject;


		anIni: pIniDataX;


		aDirty: pBoolean;


		id_Keys,


		id_KeyCommand,


		id_Value,


		id_Encryption,


		id_Delimiter,


		id_ValueCommand,


		id_Values: Word


		);


	Begin


	Inherited InitResource (aParent, id_Keys, 64, id_KeyCommand);


	Value.InitResource


		(


		aParent,


		anIni,


		aDirty,


		id_Value,


		id_Encryption,


		id_Delimiter,


		id_ValueCommand,


		id_Values


		);


	Ini := anIni;


	Dirty := aDirty;


	End;





Destructor tKeys.Done;


	Begin


	Value.Done;


	Inherited Done;


	End;





Procedure tKeys.ClearList;


	Begin


	Inherited ClearList;


	Value.ClearText;


	Value.Disable;


	End;





Likewise, Enable and Disable are the expected mirror images of each other, simply enabling or disabling the Keys smart combo box itself, plus the Value property:





Procedure tKeys.Disable;


	Begin


	Inherited Disable;


	Value.Disable;


	End;





Procedure tKeys.Enable;


	Begin


	Inherited Enable;


	Value.Enable;


	End;





The LoadList method, which the tSections.Selected event handler invokes whenever a user (or the program) selects a section name, loads the Keys combo box with the names of keys for that section, obtained from the Ini property:





Procedure tKeys.LoadList;


	Var


		k: Word;


		Key: pOString;


	Begin


	Ini^.RefreshKeys;


	ClearList;


	For k := 1 to Ini^.Keys.Count do


		Begin


		Key := Ini^.Keys.At(k-1);


		AddString (Key^.CString);


		End;


	SetSelIndex (0);


	End;





As with the tSections class, we must override the SetSelIndex method so that user and programmatic selection will behave identically:





Procedure tSelections.SetSelIndex (IX: Integer);


	Var


		Msg: tMessage;


	Begin


	Inherited SetSelIndex (IX);


	Selected (Msg);


	End;





tKeys’ Selected method has to clear its Value property if no item is currently selected, and pass the newly selected key to the parent’s Ini property otherwise:





Procedure tKeys.Selected (Var Msg: tMessage);


	Var


		Key: tOString;


	Begin


	Inherited Selected (Msg);


	If GetSelIndex = -1 then


		Begin


		Value.ClearText;


		Value.Disable;


		End


	else


		Begin


		Key.Init (0);


		GetSelText (Key);


		Ini^.SetKey (Key);


		Key.Done;


		Value.Enable;


		Value.LoadValue;


		End;


	End;





Just as the tSections.Selected method could invoke tKeys.LoadList if there was a legitimate selection, so can tKeys.Selected invoke tValue.LoadValue. After Ini’s SetKey method is invoked, it will have the correct value for that key available.


Like tSections, tKeys also has a Changed event handler:





Procedure tKeys.Changed (Var Msg: tMessage);


	Begin


	Inherited Changed (Msg);


	If GetSelIndex = -1 then


		Begin


		Value.ClearText;


		Value.Disable;


		End;


	End;





Its Delete method is also constructed similarly. Of course, in both cases, the differences are due to the different properties each has; there’s no way they could have been implemented as two objects of the same class:





Procedure tKeys.Delete;


	Var


		Name: tOString;


	Begin


	Name.InitTextW (@Self);


	Ini^.SetKey (Name);


	Ini^.DeleteKey;


	Dirty^ := True;


	Name.Done;


	Inherited Delete;


	End;


Adding the tValues Property�tc "Adding the tValues Property"�


Most of the work of the INI Editor has been deferred, through class after class, to the tValues class. Distributing the application’s complexity throughout those other objects has nevertheless left the tValues class with plenty to do.


One reason for breaking a problem into component objects is to produce, as a by-product, object classes that may be reused for some other project. Another is to simply manage complexity by breaking it into simpler components. Even when none of the pieces are reusable, if the result is an application whose code is easier to understand and maintain, the effort is well worth it.


At this point, INI Editor has a Sections combo box/command button pair that works together and is able to affect the Keys combo box. The Keys combo box/command button pair, in turn, also works together and is able to tell the Value controls on the main dialog that a section and key have been selected and to display the associated value.


The Value group, however, contains more controls than either Sections or Keys (unless you count the fact that Sections includes Keys, as Keys includes Values). More to the point, all the controls interact. A change to Delimiter must reload the Values list. A change to Encryption must reload the Value edit box. A change to either Encryption or Value must enable the Change command button.


While all the controls interact, not every one interacts with every other one. The paragraph above suggests lines along which the tValues class we’re about to create could be further decomposed. Clearly the Delimiter and Values controls, together, make up an object similar in concept to the tSmartCombo we already created. Likewise, the Value edit box and the command button, together, can be realized as a single object. A derivative of that object could then bring in the encryption key.


Best of all, none of these component objects is very complex, and (finally!) none of them push any complexity off on yet-to-be-defined properties of their own. That tells us we are nearly finished with INI Editor!


You’ve already started the Values unit. We now have to flesh out the tValue class in that unit, but to do so we’ll have to add several other classes. Because the various Value controls all work together, each one needs to be able to reference the others in a circular manner, so we can’t put them in separate units. In addition, we’ll have to take advantage of the same trick we used in tSmartCombo, where we used one giant Type statement and declared the pointers first:





Type


	pValues = ^tValues;


	pValue = ^tValue;





	pDelimiter = ^tDelimiter;


	tDelimiter = Object (tXEdit)


	Values: pValues;


	Constructor InitResource


		(


		aParent: pWindowsObject;


		id_Delimiter: Word;


		aValues: pValues


		);


	Procedure Updated (Var Msg: tMessage);


		Virtual nf_First + en_Update;


	Procedure Changed (Var Msg: tMessage);


		Virtual nf_First + en_Change;


	End;





	tValues = Object (tXListbox)


	Delimiter: tDelimiter;


	Value: pValue;


	Constructor InitResource


		(


		aParent: pWindowsObject;


		id_Delimiter,


		id_Values: Word;


		aValue: pValue


		);


	Destructor Done; Virtual;


	Procedure SetValues;


	End;





	pEncryption = ^tEncryption;


	tEncryption = Object (tXEdit)


	Value: pValue;


	Original: tOString;


	Constructor InitResource


		(


		aParent: pWindowsObject;


		id_Encryption: Word;


		aValue: pValue


		);


	Destructor Done; Virtual;


	Function IsChanged: Boolean;


	Procedure Changed (Var Msg: tMessage);


		Virtual nf_First + en_Change;


	Procedure SetIni (Var Ini: tIniData);


	End;





	pValueCommand = ^tValueCommand;


	tValueCommand = Object (tXButton)


	Value: pValue;


	Constructor InitResource


		(


		aParent: pWindowsObject;


		id_ValueCommand: Word;


		aValue: pValue


		);


	Procedure Clicked (Var Msg: tMessage);


		Virtual nf_First + bn_Clicked;


	End;





	tValue = Object (tXEdit)


	Ini: pIniDataX;


	Dirty: pBoolean;


	Command: tValueCommand;


	Values: tValues;


	Encryption: tEncryption;


	Original: tOString;


	Constructor InitResource


		(


		aParent: pWindowsObject;


		anIni: pIniDataX;


		aDirty: pBoolean;


		id_Value,


		id_Encryption,


		id_Delimiter,


		id_ValueCommand,


		id_Values: Word


		);


	Destructor Done; Virtual;


	Procedure LoadValue;


	Function IsChanged: Boolean;


	Procedure Changed (Var Msg: tMessage);


		Virtual nf_First + en_Change;


	Procedure Change;


	Procedure Disable;


	Procedure Enable;


	End;





(***********************************************)


			Implementation


(***********************************************)





There are five classes here. The tDelimiter class is used by the tValues class, which it points back to. The tValueCommand and tEncryption classes are used by the tValue class, which they point back to. Since only tValue and tValues are back-referenced, only they have pointer types defined at the top of the group.


Pascal may be a top-down compiler, but those of us with bottom-up minds will find this easier to understand if we begin with tValue.


tValue owns four properties in addition to the pointers to Ini and Dirty:





Constructor tValue.InitResource


		(


		aParent: pWindowsObject;


		anIni: pIniDataX;


		aDirty: pBoolean;


		id_Value,


		id_Encryption,


		id_Delimiter,


		id_ValueCommand,


		id_Values: Word


		);


	Begin


	Inherited InitResource (aParent, id_Value, 128);


	Command.InitResource (aParent, id_ValueCommand, @Self);


	Values.InitResource (aParent, id_Delimiter, id_Values, @Self);


	Encryption.InitResource (aParent, id_Encryption, @Self);


	Original.Init (0);


	Ini := anIni;


	Dirty := aDirty;


	End;





Destructor tValue.Done;


	Begin


	Command.Done;


	Values.Done;


	Encryption.Done;


	Original.Done;


	Inherited Done;


	End;





Command, Values, and Encryption represent the other controls on the dialog that tValue directly manages. Original is a tOString intended to provide a base value by which we can determine whether the user has changed the original value.


The LoadValue method is analogous to tSections and tKeys’ LoadList methods:





Procedure tValue.LoadValue;


	Begin


	Encryption.SetIni (Ini^);


	Original.SetText (Ini^.Value);


	SetText (Original);


	Command.Disable;


	End;





LoadValue sets the Ini object’s encryption key with whatever the Encryption control contains, then copies the resulting value into �Original and into the Value control itself. Finally, it disables the command button, which is supposed to be enabled only when the user has made a change to Value or Encryption.


We stored the original value so we could tell if the user changed the Value, then changed it back:





Function tValue.IsChanged: Boolean;


	Begin


	IsChanged := (not Original.MatchesW (@Self)) or


		Encryption.IsChanged;


	End;





If the Encryption value has changed, that counts, so we’ll check it, too.


If the user does make a change, the Changed event handler is invoked:





Procedure tValue.Changed (Var Msg: tMessage);


	Begin


	If IsChanged then


		Command.Enable


	else


		Command.Disable;


	Values.SetValues;


	End;





The user might have changed the contents of Value so that they are different than they originally were, or they could have been changed back. By checking with IsChanged, we’ll be able to enable or disable the command button appropriately. Either way, Values should be updated to reflect the change.


We haven’t defined the tValueCommand class yet, but we know from the similar property in tSmartCombo that when the user clicks the Change button, it will cause a Change method to be invoked in tValue:





Procedure tValue.Changed;


	Begin


	Encryption.SetIni (Ini^);


	Ini^.SetValueW (@Self);


	Original.SetTextW (@Self);


	Dirty^ := True;


	Command.Disable;


	End;





Although we’ve tracked the user’s changes to the Value edit box, clicking on the command button makes it official. We’ll set the Ini property’s encryption key and value field, which will create a tIniDataX transaction. We’ll then reset our own Original value, and mark the Dirty flag so the application will know there are transactions that need to be written to disk. Finally, we disable the command button because now the value on-screen matches the “official” value (even if it hasn’t yet been written to disk).


Finally, we have the obligatory Enable and Disable methods:





Procedure tValue.Disable;


	Begin


	Inherited Disable;


	Command.Disable;


	Values.Disable;


	End;





Procedure tValue.Enable;


	Begin


	Inherited Enable;


	Command.Enable;


	Values.Enable;


	End;





The simplest of the tValue properties to examine is the tValueCommand class object, Command. It only has two methods, one of which is the constructor:





Constructor tValueCommand.InitResource


		(


		aParent: pWindowsObject;


		id_ValueCommand: Word;


		aValue: pValue


		);


	Begin


	Inherited InitResource (aParent, id_ValueCommand);


	Value := aValue;


	End;





Procedure tValueCommand.Clicked (Var Msg: tMessage);


	Begin


	Value^.Change;


	End;





We’ve already seen the Change method of tValue; now you know how it got invoked.


The Encryption property is an object of the tEncryption class:





Constructor tEncryption.InitResource


		(


		aParent: pWindowsObject;


		id_Encryption: Word;


		aValue: pValue


		);


	Begin


	Inherited InitResource (aParent, id_Encryption, 16);


	Value := aValue;


	Original.Init (0);


	End;





Destructor tEncryption.Done;


	Begin


	Original.Done;


	Inherited Done;


	End;





I guessed at a maximum encryption key of sixteen characters, but as I mentioned when we designed the tXEdit class earlier in this chapter, there is no automatic enforcement of the length and no harm done if the user exceeds it.


This class also has an Original property, and for the same reason: we need to determine whether the current, on-screen value in the �Encryption field is the same as it originally was. Checking it is simple:





Function tEncryption.IsChanged: Boolean;


	Begin


	IsChanged := not Original.MatchesW (@Self);


	End;





We’ve already seen how tValue.IsChanged invokes this method, as well as checks its own Original property.


Whenever the user types a character into the Encryption edit box or makes any other kind of alteration there, the Changed event handler takes over:





Procedure tEncryption.Changed (Var Msg: tMessage);


	Var


		Temp,


		E: tOString;


	Begin


	Temp.InitText (Value^.Original);


	E.InitTextW (@Self);


	Temp.Decrypt (E);


	Value^.SetText (Temp);


	Value^.Changed (Msg);


	Temp.Done;


	E.Done;


	End;





This method takes the original Value text, as stored in Value, and decrypts it, using the new encryption key. It then places the decrypted value on screen, using Value^.SetText, which causes the new value to be displayed but does not change the value of Value^.Original. The Value^.Changed method is then invoked, since programmatic changes such as this one do not automatically trigger the event handler. Value^.Changed will, you’ll recall, take care of the other housekeeping a change requires, such as recalculating the Values list.


Speaking of Value^.Changed, we called tEncryption.SetIni from that method. Here’s the code:





Procedure tEncryption.SetIni (Var Ini: tIniData);


	Begin


	Original.SetTextW (@Self);


	Ini.SetEncryptionKey (Original);


	End;





That finishes off the Encryption property, leaving only Values.


tValues has a tDelimiter property, which we’ll examine last, that must be created and destroyed. It also has a point-back property to the tValue object that will, eventually, create it:





Constructor tValues.InitResource


		(


		aParent: pWindowsObject;


		id_Delimiter,


		id_Values: Word;


		aValue: pValue


		);


	Begin


	Inherited InitResource (aParent, id_Values);


	Delimiter.InitResource (aParent, id_Delimiter, @Self);


	Value := aValue;


	End;





Destructor tValues.Done;


	Begin


	Delimiter.Done;


	Inherited Done;


	End;





Although the tIniData class provides for parsing a value into a collection of subvalues if there’s a delimiter, we can’t use that method directly. The reason is that, as the user types into the Value field or specifies a delimiter, we’ll want to reflect the changes in the Values list in real-time, without creating a tIniDataX transaction for each keystroke.


Fortunately, the code from tIniData can be used almost unchanged:





Procedure tValues.SetValues;


	Var


		V, D: tOString;


		SubValue: pOString;


	Begin


	ClearList;


	V.InitTextW (Value);


	If V.Length > 0 then


		If Delimiter.Length = 0 then


			AddString (V.CString)


		else


			Begin


			D.InitTextW (@Delimiter);


			Repeat


				Begin


				SubValue := V.GetToken (D.CString[0]);


				If SubValue <> Nil then


					Begin


					AddString (SubValue^.CString);


					Dispose (SubValue, Done);


					End;


				End


			Until SubValue = Nil;


			D.Done;


			End;


	V.Done;


	End;





We do not override the ancestor Enable and Disable methods because we do not want to disable the Delimiter box. Although in a way the Delimiter is subsidiary to Values, the user should be able to place a value there or in Encryption before or after the section and key have been selected.


An object of the tDelimiter class will represent the Delimiter edit box. tDelimiter’s only property is a pointer back to its dominant sibling, the Values list box. Its constructor sets that pointer:





Constructor tDelimiter.InitResource


		(


		aParent: pWindowsObject;


		id_Delimiter: Word;


		aValues: pValues


		);


	Begin


	Inherited InitResource (aParent, id_Delimiter, 1);


	Values := aValues;


	End;





As its third parameter, the inherited InitResource constructor requires the maximum number of characters this edit box is to hold. However, this value is not used for enforcement; it is only used to determine the size of a transfer buffer (referring to a technique we’ll explore later). To enforce a maximum string size, we’ll have to do the policing ourselves. (One way to impose input validation on an edit field in BP7 is to use the new tValidator objects, which we’ll discuss in Chapter 12.)


All we have to do is override tXEdit’s Update handler. This is invoked by the system in response to an en_Update notification message; this is sent by an edit box after the user has taken an action that would change the box’s contents, but before the change is painted on the screen:





Procedure tDelimiter.Updated (Var Msg: tMessage);


	Var


		Test: tOString;


	Begin


	Test.InitTextW (@Self);


	If Test.Length > 1 then


		Begin


		Test.Leftmost (1);


		SetText (Test);


		MessageBeep (mb_IconAsterisk);


		End;


	Test.Done;


	End;





We get the current text (it’s current even though it hasn’t been painted, yet) into a local object and check its length. If it is longer than one character, we invoke the tOString.Leftmost method to chop off any characters after the first, place the truncated value into the edit box, then cause the system speaker to beep to let the user know there was a slight problem that’s been handled. Specifying the mb_IconAsterisk parameter to MessageBeep simply tells the system to create the sound associated with informational-style warnings. On most computers, you won’t be able to tell that beep from any other. On the other hand, if the user’s computer has a sound board or speaker driver installed, he or she will hear whatever Control Panel was told would be an appropriate sound at such times.


The main reason for the tDelimiter class is to pass the change notification to tValues. It’s easy for a true parent window to get a notification from a control; trickier for a sibling to receive one. This method works well. By giving tDelimiter a pointer property to its sibling, the Change method has only to invoke its partner’s SetValues method:





Procedure tDelimiter.Changed (Var Msg: tMessage);


	Begin


	Values^.SetValues;


	End;





tDelimiter is now complete. It does not need a destructor, because its property is just a pointer to an object it did not create.


Undoing Transactions�tc "Undoing Transactions"�


There’s one more feature of INI Editor to cover in this chapter: how to undo a transaction that has been sent to the tIniDataX object.


Built into tIniDataX is the transaction-handling facility for both creating and retracting transactions, so all we have to do is add the ability to use a backed-out transaction to add or subtract the data it represents to or from the on-screen representations.


This is done in response to the Edit..Undo command, so the code is realized as cmEditUndo:





Procedure tMainDlg.cmEditUndo (Var Msg: tMessage);


	Var


		aSection,


		aKey,


		aValue: tOString;


		aTranType: tTranType;


		IX: Integer;


	Begin


	aSection.Init (0);


	aKey.Init (0);


	aValue.Init (0);


	Ini.UndoTransaction (aSection, aKey, aValue, aTranType);





	IX := Sections.FindText (aSection, -1);


	If IX > -1 then


		Sections.SetSelIndex (IX)


	else


		Sections.SetSelIndex 


			(Sections.AddString (aSection.CString));


	Sections.Selected (Msg);





	If aKey.Length > 0 then


		Begin


		IX := Sections.Keys.FindText (aKey, -1);


		If IX > -1 then


			Sections.Keys.SetSelIndex (IX)


		else


			Sections.Keys.SetSelIndex 


				(Sections.Keys.AddString (aKey.CString));


		Sections.Keys.Selected (Msg);


		End;





	If aTranType = Ini_Add then


		Sections.Keys.Value.LoadValue;





	aSection.Done;


	aKey.Done;


	aValue.Done;


	DataFile.Dirty := Ini.CanUndoTransaction;


	End;





This is one of the longer methods we’ve seen. In the first four lines of code, three local objects—aSection, aKey, and aValue—are initialized and sent to Ini.UndoTransaction, which you’ll recall backs out the most recent transactions from tIniDataX’s collection and places the values into those three objects.


Next, we look to see if the Section name contained in aSection can be found in the Sections combo box. If it can’t, it must be added. We can deduce that the transaction was a section deletion even without checking; that’s the only way a section name could have been removed from the combo box. Whether we added it or not, we then select that section name as part of the undo operation.


We then repeat this technique against the aKey object and the Keys combo box. Again, the only way a key name could have been removed from the combo box is by a Key Delete command; so to undo the operation, we add it back to the list. The transaction key name must also be selected.


If this is an Add transaction, we don’t worry about the value in aValue—that’s the value of the transaction, which we are backing out. Instead we just invoke the regular LoadValue method. tIniDataX will return the value for the specified section and key, unaffected by the transaction that tIniDataX no longer owns.


Finally, we destroy the local objects and reset the Dirty flag, based on whether there are any transactions left to save or not.


The transaction technique is very valuable, if for no other reason than it makes almost unlimited undos possible. You can also implement a redo command by popping the transactions you remove into another collection, but we aren’t going to take INI Editor that far.


In fact, INI Editor is now complete except for its online help, which we’ll cover in the next chapter.


